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Analysis of Composite Materials— 
A Survey 
The purpose of the present survey is to review the analysis of composite materials 

from the applied mechanics and engineering science point of view. The subjects 
under consideration will be analysis of the following properties of various kinds of 
composite materials: elasticity, thermal expansion, moisture swelling, 
viscoelasticity, conductivity (which includes, by mathematical analogy, dielectrics, 
magnetics, and diffusion) static strength, and fatigue failure. 

"Where order in variety we see 
And where, though all things differ, all agree' 

Alexander Pope 

1 Introduction 
Composite materials consist of two or more different 

materials that form regions large enough to be regarded as 
continua and which are usually firmly bonded together at the 
interface. Many natural and artificial materials are of this 
nature, such as: reinforced rubber, filled polymers, mortar 
and concrete, alloys, porous and cracked media, aligned and 
chopped fiber composites, polycrystalline aggregates (metals), 
etc. 

Analytical determination of the properties of composite 
materials originates with some of the most illustrious names 
in science. J. C. Maxwell in 1873 and Lord Rayleigh in 1892 
computed the effective conductivity of composites consisting 
of a matrix and certain distributions of spherical particles (see 
Part 6). Analysis of mechanical properties apparently 
originated with a famous paper by Albert Einstein in 1906 in 
which he computed the effective viscosity of a fluid con
taining a small amount of rigid spherical particles. Until 
about 1960, work was primarily concerned with 
macroscopically isotropic composites, in particular, 
matrix/particle composites and also polycrystalline 
aggregates. During this period the primary motivation was 
scientific. While the composite materials investigated were of 
technological importance, a technology of composite 
materials did not as yet exist. Such a technology began to 
emerge about 1960 with the advent of modern fiber com
posites consisting of very stiff and strong aligned fibers (glass, 
boron, carbon, graphite) in a polymeric matrix and later also 
in a light weight metal matrix. 

The engineering significance of reliable analysis of 
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properties is quite different for particulate composites and for 
fiber composites. For the former, such capability is desirable, 
while for the latter it is crucial. The reason is that the range of 
realizable properties and the ability to control the internal 
geometry are quite different in the two cases. For example: 
the effective Young's modulus of an isotropic composite 
consisting of matrix and very much stiffer and stronger 
spherical type particles will depend primarily on volume 
fractions and can be increased in practice only up to about 
four-five times the matrix modulus. The strength of such a 
composite is only of the order of the matrix strength and may 
even be lower. The effect of stiffening and strengthening 
increases if particles have elongated shapes but at the price of 
lowering the maximum attainable particle volume fraction. 

A unidirectional fiber composite is highly anisotropic and 
therefore has many more stiffness and strength parameters 
than a particulate composite. Stiffness and strength in the 
fiber direction are of fiber value order, and thus very high. 
Stiffnesses and strengths transverse to the fiber direction are 
of matrix order, similar to those of a particulate composite, 
and thus much lower. Carbon and graphite are themselves 
significantly anisotropic, their elastic properties being defined 
by five numbers instead of the usual two for an isotropic 
material. Furthermore, matrix properties may be strongly 
influenced by environmental changes such as heating, 
cooling, and moisture absorption. All of this creates an 
enormous variety of properties, of much wider range than for 
a particulate composite. 

The generally low values of stiffness and strength trans
versely to the fibers provide the motivation for laminate 
construction consisting of thin unidirectional layers with 
different reinforcement directions. The laminates are formed 
into laminated structures. The layer thicknesses, fiber 
directions, choice of fibers, and matrix are at the designers 
disposal and should, ideally, be chosen from the point of view 
of optimization of an important quantity such as weight or 
price. The design of such structures is an integrated process 
leading from constituents to structure in the sequence: 

Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/481 

Copyright © 1983 by ASME
Downloaded 18 Feb 2010 to 153.104.2.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



FIBERS AND MATRIX - UNIDIRECTIONAL COM
POSITE - LAMINATE - LAMINATED STRUCTURE. 

Traditionally, material properties have been obtained by 
experiment and material improvement has been achieved 
empirically and qualitatively. The structural designer had at 
his disposal a limited number of material options provided by 
the materials developer. This situation is entirely different for 
fiber composite structures. The only constituents that are 
materials in the traditional sense are fibers and matrix. 
Everything following in the sequence, including the 
unidirectional material, is of such immense variety that 
analysis, rather than experimentation, is the practical 
procedure to obtain properties. Thus, the relevant methods 
are those of applied mechanics rather than those of materials 
science. 

The purpose of the present survey is to present analysis of 
composite materials from the applied mechanics and 
engineering science point of view, and thus as a subject that is 
based on principles and rational methods and not on em
piricism and speculation. The subjects under consideration 
will be analysis of the following properties of various kinds of 
composite materials: elasticity, thermal expansion, moisture 
swelling, viscoelasticity, conductivity (which includes, by 
mathematical analogy, dielectrics, magnetics, and diffusion) 
static strength, and fatigue failure. Relevant comprehensive 
literature expositions are Hashin [1] and Christensen [2] 
which will be referred to frequently. Important subject 
omissions are elastodynamic behavior and plasticity, this for 
reasons of space limitation. Surveys of these subjects may be 
found in [2]. Analysis of laminates is not included since this is 
a well understood subject and it has been described in several 
textbooks, except for the problem of laminate failure which 
will be briefly discussed. 

2 General Considerations 

There are two kinds of information that determine the 
properties of a composite material: the internal phase 
geometry, i.e., the phase interface geometry and the physical 
properties of the phases, i.e., their constitutive relations. Of 
these, the former is far more difficult to classify than the 
latter. In reality the internal geometry of every composite 
material is to a certain extent random. In a general two phase 
material (for reasons of simplicity the discussion will be 
concerned with two phases. The case of more phases will only 
be considered as needed) the phase regions are of arbitrary 
unspecified shapes. When one phase is in the form of particles 
embedded in the second matrix phase the material is called a 
particulate composite. The internal geometry may be three or 
two dimensional. The latter case implies cylindrical specimens 
where each cross section has the same plane geometry. If 
nothing else is specified this is called a. fibrous material, which 
is the two-dimensional case of a general two phase material. 
The two-dimensional analogue of a particulate composite is a 
fiber composite, the particles being aligned cylinders. 

It is necessary to explain what is meant by a composite 
material in distinction from a composite body. In the former 
it is possible to define representative volume elements (RVE) 
Fig. 1, which are large compared to typical phase region 
dimensions (e.g., fiber diameters and spacings). From a 
practical point of view, a necessary characteristic of a 
composite material is statistical homogeneity (SH). A strict 
statistical definition of this concept must be expressed in 
terms of n-point probabilities and ensemble averages, see e.g., 
[3, 4]. Suffice it to say for present purposes that in a SH 
composite all global geometrical characteristics such as 
volume fractions, two-point correlations, etc. are the same in 
any RVE, irrespective of its position. 

The effective properties of a composite material define the 
relations between averages of field variables such as stress and 

Fig. 1 Representative volume element 

strain when their space variation is statistically homogeneous. 
For a strict definition of statistical homogeneity of such fields 
the reader is again referred to [4]. It may be said, somewhat 
loosely, that statistically homogeneous fields are statistically 
indistinguishable within different RVE in a heterogeneous 
body. By this is implied that their statistical moments such as 
average, variance, etc. are the same when taken over any RVE 
within the heterogeneous body. In particular, statistical 
homogeneity implies that body averages and RVE averages 
are the same. 

To produce a SH field in a composite it is expedient to 
apply boundary conditions that produce homogeneous fields 
in an homogeneous body. Such boundary conditions will 
consequently be called homogeneous (not to be confused with 
the concept of homogeneous boundary conditions in the 
theory of differential equations). For elastic bodies, 
homogeneous boundary conditions are either one of 

Ui{S)=e%Xj (a) Ti{S)=4nj (b) (2.1) 
where e$ are constant strains and cr°- are constant stresses. 

For heat (of electrical) conduction such boundary con
ditions are 

*>(S) =-//?*,- (a) qn(S)=q»ini (b) (2.2) 

where <p is temperature or potential, Hj are constants 
(components of gradient), q° are constant fluxes, and q„ is the 
normal flux component. Other cases of homogeneous 
boundary conditions will be given as needed. 

The fundamental postulate of the theory of (elastic) 
heterogeneous media states, Hashin [1]: "The stress and 
strain fields in a large SH heterogeneous body subjected to 
homogeneous boundary conditions are SH, except in a 
boundary layer near the external surface." The postulate 
applies in obvious fashion to other physical properties. 

The effective elastic properties are defined by the linearity 
relations 

ou = CfJkieki (a) eij = Stjkrok, (b) (2.3) 
where C,*w are effective elastic moduli and S*Jki are effective 
elastic compliances, connected by the usual reciprocity 
relation and having the usual symmetries, and overbars 
denote here and from now on, averages over RVE. When 
(2.1a) is prescribed, it follows by the average strain theorem, 
[1], that ey = ey. Thus to determine Cfjk, the average stress ay 
must be computed subject to (2.1a). Conversely, when (2.lb) 
is prescribed, then from the average stress theorem, [1], 
ay — ay. Thus to find Syk/ the average strain ly must be 
computed subject to (2.1b). 
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Everything is analogous for conductivity. The effective 
conductivity tensor jtj and the effective resistivity tensor p,* 
are defined by 

q, = rtHj H,=p*qj (2.4) 

where H, = — <ph The tensors /nj and pfj are reciprocal and are 
determined analogously to effective elastic properties. The 
averages Ht and qs are given by Iff and q<j in (2.2) from 
conductivity average theorems, [1]. 

The computation of effective properties in terms of 
averages will be called the direct approach. In general it 
requires determination of the appropriate fields in the phases 
as defined by the field equations, interface continuity con
ditions, and external homogeneous boundary conditions, in 
order to compute the required averages. The interface con
ditions are, for solid mechanics, 

«J1) = «P>; 7T> = 7 p on Sl2 (2.5) 

and for conductivity 

^ ) = v 0 ) ; qM=q«> on Sl2 (2.6) 

It follows that effective physical properties are in general 
functions of all the details of the constituent interface 
geometry. Actual direct computation is an extremely difficult 
problem, primarily because of the necessity to satisfy (2.5) or 
(2.6), and it must be restricted to simple models not only 
because of mathematical difficulties but also because the 
actual details of the interface geometry are never known. 

An alternative definition of effective physical properties 
can be given in terms of energy expressions. This is based on 
the average theorem of virtual work, [1], which when 
specialized to heterogeneous elastic bodies with homogeneous 
boundary conditions states 

U*=^C*ulcleuSklV=W*V (a) 

(2.7) 

U'=^StJuauaklV=WV (6) 

where t/e is strain energy, U" is stress energy (this replaces the 
expression strain energy in terms of stresses), Kis the volume, 
W is elastic energy per unit volume RVE, equation (2.7a) is 
associated with (2. la), and {2.1b) is associated with {2Ab). 

Similarly for conduction with homogeneous boundary 
conditions 

QH=l-tfjHiHJV (a) 

(2.8) 

Q,= \plqiqJV (b) 

where Q is \/2\qj(\)Hi{x)dV, are associated with (2.2 a,b), 
respectively. 

It is of interest to note that in the early stages of the theory 
of composite materials, effective elastic moduli were defined 
in terms of energy by expressions of type (2.7), following 
Einstein's pioneering paper on viscosity of dilute suspensions, 
[5]. The equivalence of the average and energy definitions of 
effective elastic moduli (2.3) and (2.7) was apparently only 
recognized in 1963, independently, by Hill [6] and by Hashin 
[3], On the other hand, early work on effective conductivity 
employed the average definition (2.4). 

The primary importance of (2.8) is in that such energy 
expressions can be bounded from above and below by ex-
tremum principles. Bounding requires construction of ad
missible fields that are much easier to construct than actual 
solutions. By judicious choice of boundary conditions, energy 
expressions can be expressed in terms of a single property, 
e.g., effective elastic modulus. Bounding of strain energy 
yields an upper bound on effective modulus. Bounding of 
stress energy yields an upper bound on the effective com

pliance, and thus on the reciprocal of the effective modulus, 
and consequently a lower bound on the effective modulus. 
Similar considerations apply for conduction. 

Everything said so far has merely been concerned with 
effective properties. In the context of homogeneous media the 
analogous subject would be homogeneous material 
properties, which are of course measured in the laboratory 
using specimens with internal homogeneous fields. Indeed 
equations (2.3), (2.4), (2.7), and (2.8) have completely 
analogous homogeneous material counterparts in terms of 
field quantities "at a point." The question that now arises is: 
what is a suitable macrodescription of a heterogeneous 
material body when it is subjected to arbitrary boundary 
conditions and thus the internal fields are no longer 
statistically homogeneous? It is instructive to recall how this 
problem is resolved in the case of "homogeneous" continua. 
It is always assumed that such continua retain their properties 
regardless of specimen size, thus also for infinitesimal 
elements. This permits establishment of field equations in 
terms of field derivatives. However, all real materials have 
microstructure. Metals, for example, are actually 
polycrystalline aggregates and are thus heterogeneous 
materials. Therefore the differential element of the theory of 
elasticity is in reality a RVE, which is composed of a suf
ficiently large number of crystals, and whose effective elastic 
moduli are the elastic moduli of the theory of elasticity. Since 
the RVE is not infinitesimal it emerges that the classical 
theory of elasticity is an approximation that results in a 
macrodescription of a polycrystalline aggregate when the 
RVE size is "sufficiently small" in relation to the body 
dimensions. 

The simplest point of view would be to adopt the same 
approximation for a composite material body. This would 
imply that the classical field equations of elasticity, con
ductivity, or other are assumed valid for the composite 
material body with effective properties replacing the usual 
homogeneous properties. Such an approach may be called the 
classical approximation and will now be discussed within the 
frame of more general theory. It is first necessary to define 
appropriate field variables for construction of field equations 
which are to describe a composite material as some equivalent 
continuum. The usual choice is moving averages over RVE or 
ensemble averages. A moving average of a function, e.g., 
displacement, is defined as 

«,-(x) = —jw/ (x ,x ' ) c fo ' (2.9) 

where x is a position vector to a reference point in the RVE 
(e.g., centroid) defining its location, x\ is a local coordinate 
system originating at x (Fig. 1) and the integration is over 
RVE. 

The moving average concept is tied to the concept of 
geometrical scaling of a composite material which is in
dispensable for its representation as some equivalent con
tinuum. The typical dimensions of phase regions, e.g., 
particle diameters, single crystal dimensions, are defined as 
the MICRO scale. The dimensions of the RVE are defined as 
the MINI scale and the dimensions of the composite material 
body as the MACRO scale. The equivalent continuum is a 
meaningful representation of a heterogeneous body only if 

MICRO < < MINI < < MACRO (2.10) 

This will be referred to as the MMMprinciple. Displacements 
w/(x,x'), strains e,y(x,x'), and stresses a-j(x,x) within the 
phases are called microvariables while moving averages 
should by the same token be called minivariables. Ac
cordingly computation of effective physical properties on the 
basis of phase geometry is frequently called micromechanics. 
It has been suggested that analysis of a composite as if it were 
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some continuum, thus in terms of minivariables, should be 
called minimechanics, [7]. 

It is easily shown that moving averaging and differentiation 
are commutative (see e.g., [1]). Thus for example 

This leads at once to the conclusion that 

7lMrJ) = eiJ{x) (2.12) 

Another point of view is based on the ensemble average. 
This average is based on the concept of an ensemble of 
composite specimens that have certain common charac
teristics such as: phase properties, phase volume fractions, 
and certain statistical moments of spatial variation of 
properties. The ensemble average of w,- is defined by 

. n = N 

<K,->(x)= - £ K , - „ ( X ) (2.14) 

where there are TV members of the ensemble. The operations 
of ensemble averaging and differentiation are commutative. 
Therefore (2.12) and (2.13) are also valid for ensemble 
averages; see e.g. [4], 

In the case of SH fields, the moving average and the en
semble average are constants. It is also quite evident that they 
are equal, which is known as an ergodic hypothesis. The 
fundamental problem is the relation between moving averages 
or ensemble averages of statistically nonhomogeneous stress 
and strain. It is remarkable that the answer to this question 
has been given for both kinds of averages almost at the same 
time and that the relations are the same (Beran and McCoy 
[8]-ensemble average, Levin [9]-moving average), thus 

&,y(x)=JLJw(x,x')ew(x')c/x' (2.15) 

This important result shows that space variable averages are 
defined by what is called today a nonlocal theory. It is, 
however, not a practical result since the two point tensor L* 
depends on phase properties and phase geometry in unknown 
fashion. For similar developments for conductivity of 
heterogeneous media see Beran, [10]. 

It is of interest to note that multipolar or strain gradient 
theories are special cases of nonlocal theory. This is seen from 
series expansion around x, [8], from which it follows that 
(2.15) can be approximated by 

^ij = C*jk/eM+D*ijk/m^k/,m+E*jkim„ek/y,„„+ . . . (2.16) 

If only the first term in the right side of (2.16) is retained then 

W = C5„£-H(x) (2-17) 
which implies that variable averages are related just as 
constant averages in (2.3). The relations (2.11)—(2.13), and 
(2.17) are equivalent to classical elasticity equations where the 
displacements are moving or ensemble averages and the elastic 
properties are effective. Therefore, equation (2.17) is the 
essence of the classical approximation for heterogeneous 
media introduced in the foregoing. Classical approximations 
for other kinds of physical behavior are defined analogously. 
On the basis of accumulated experience with composite 
materials and heterogeneous media it appears that this 
simplest approximation is adequate for most engineering 
problems. The situation is different for dynamic problems 
with very high frequencies of vibration, thus very small 
wavelengths, and for very high stress and strain gradients, 
e.g., at crack tips. 

This survey will be almost exclusively concerned with 
classical effective properties that define the classical ap

proximation. The following discussions of analytical treat
ments will be divided, if possible, into three categories: (a) 
direct approach, (T>) variational approach, and (c) ap
proximations. Direct approach implies exact calculation of 
effective properties for some geometrical model of a com
posite material. The value of such results obviously depends 
on the realism of the model used but the number of choices 
that permit exact analysis is not large. Exact analysis implies 
that the microfields that are averaged satisfy the phase 
governing differential equations, the phase interface con
ditions, and the external boundary conditions on the com
posite. However, the latter need not be satisfied precisely but 
only in a suitable average sense (recall the boundary layer in 
the fundamental postulate of the theory of heterogeneous 
media). It frequently happens that effective properties 
computed for a certain model agree well with experimental 
data although the details of phase geometry of the model and 
the tested specimen are different. From this it should not be 
concluded that the model microfields are in similar agreement 
with specimen microfields, because effective properties are 
defined in terms of averages and functions that have the same 
averages can be very different in detail. 

The variational approach is in a certain sense more 
powerful than the direct approach since it leads to bounds on 
effective properties when exact calculation is not possible. In 
particular, it is the only approach that can give results for 
irregular phase geometry in terms of partial information. The 
practical importance of the bounds obtained depends on their 
proximity. 

Approximations are by their nature of unlimited variety. 
The most primitive approach is to postulate "semiempirical" 
expressions without the benefit of a model or theory. Such 
expressions will inevitably contain an undetermined 
parameter to be fitted to the experimental data. However, 
other experimental data will generally require a different 
value of the parameter and so measurement of the effective 
property has been replaced by measurement of a parameter, 
for no good reason. In more sophisticated and sometimes very 
ingenious versions, models of composite materials are 
analyzed on the basis of assumptions that are in principle 
incorrect, with the hope that the error introduced is not large. 
Only this kind of approximations will be discussed in the 
present survey and it will be endeavored to point out their 
relations to exact procedures. While approximations are 
unavoidable and often very valuable in the development of a 
complex subject of practical importance they should always 
be viewed with caution and should never displace available 
exact results. 

3 Elastic Properties 

3.1 Statistically Isotropic Composites 

3.1.1 Introduction. A composite is statistically isotropic 
when its effective stress strain relation is independent of the 
choice of coordinate system. Important cases are: random 
mixture of two phases, matrix containing spherical type 
particles or randomly oriented elongated particles (e.g., short 
fibers), porous media, etc. It is of interest to note that a 
polycrystalline aggregate with randomly oriented crystals is a 
statistically isotropic composite with an infinite number of 
anisotropic phases. This will be discussed in Section 3.1.5. It 
follows just as for homogeneous elastic materials that in the 
isotropic case (2.3) reduce to the usual forms 

&v = \*ekk6u + 2G*iu (3.1.1) 

or 

a=3K*e (a) su = 2G*eu (b) (3.1.2) 

where K* = effective bulk modulus; G* = effective shear 
modulus; &, e = isotropic part of average stress, strain; and 

484/ Vol. 50, SEPTEMBER 1983 Transactions of the ASME 

Downloaded 18 Feb 2010 to 153.104.2.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Sjj,ey = deviatoric part of average stress, strain. Other ef
fective elastic properties such as E* and c* are defined in the 
usual way. All of the interrelations of isotropic elastic moduli 
remain valid for effective elastic moduli. 

3.1.2 Direct Approach. 
for two phase composites 
elementary relations 

Central to the direct approach 
with isotropic phases are the 

*P> 
K*=Kl+(K2-K{)—v2 (a) 

G* = GX+(G2-G,)-
P(?) 

(3.1.3) 

(*) 

(no sum on ij in (b)), where 1, 2 indicate the phases, e(2) and 
e®are averages of e(x) and e,y(x) over phase 2, and v is volume 
fraction. The averages e and e„ are induced by homogeneous 
boundary conditions of type (2.1a) 

Ui(S)=eXj or ui(S)=eijxj (3.1.4) 

which arise from the decomposition e,j• = e5y+ £y. Relations 
of type (3.1.3) can also be written in terms of stress averages 
over one phase, see e.g., [1, 6]. 

The simplest case is dilute concentration of spherical or 
ellipsoidal particles of material 2 in matrix 1. The definition 
of "dilute" is that the state of strain in any one particle in the 
composite body under homogeneous boundary conditions is 
not affected by all the other particles. Thus the strain is that 
of a single particle in an infinite body and this happens to be 
uniform for an ellipsoid with far field homogeneous strain, 
Eshelby [11]. Thus for spherical particles it follows very 
simply from spherical particle strain expressions and (3.1.3) 
that 

3K, + 4G, 

3A-2+4G, 

G* = G j + ( G 2 - G , ) 
5(3*,+4G,) 

9 ^ + 8 0 , +6i(A", +2G1)G2 /G1 

(«) 

(b) 

(3.1.5) 

given independently in [11-13]. Here 1 indicates matrix, 2 = 
spherical particles, and c = v2<<\. Results for randomly 
oriented ellipsoidal particles were given in [11]. The special 
cases of elongated ellipsoids (short fibers) and platelets have 
been discussed in [2]. 

Dilute concentration results may be viewed as the first two 
terms of a power series in particle volume fraction c. In this 
representation an effective property M* may be written as 

M* 
= l+axc+a2c

2 + . . . (3.1.6) 

Dilute concentration results such as (3.1.5) determine the 
coefficient ax. Evaluation of a2 as a much more difficult 
problem which has been resolved by Batchelor and Green [15] 
for identical rigid spheres embedded in incompressible elastic 
matrix (in the context of their treatment of effective viscosity 
of a rigid spheres suspension). Chen and Acrivos [14] have 
extended the analysis to the considerably more difficult case 
of any linear isotropic elastic spheres and matrix. The 
analyses require proper summation of the effects of all sphere 
doublets and unlike ax, ct2 depends on particle statistics. For 
randomly and isotropically distributed identical rigid spheres 
in incompressible matrix the analysis of [15] provides the 
estimate a2 = 5.2 ±0.3 while according to [14] a2 =5.01 in this 
case. 

The case of finite concentration of spherical particles is an 
extremely difficult problem since computation of effective 
moduli requires a detailed elastic field analysis subject to 
interface continuity conditions (2.5) on all spherical surfaces. 
It appears that only one rigorous treatment for a special 

Fig. 2 Composite spheres assemblage; composite cylinders 
assemblage 

arrangement of spheres called the composite spheres 
assemblage is available and this only for the effective bulk 
modulus. A composite sphere is defined by an isotropic 
sphere 2 enclosed in an isotropic concentric shell 1, Fig. 2. If 
the external boundary r=b is subjected to purely radial 
displacement ur(b)= e°b, the radial stress on the boundary is 
written arr (b) = 3K*e° where K* follows from the analysis of 
this elementary, radially symmetric, elasticity problem and is 
a function of core and shell elastic moduli and of alb. It is 
seen that to an external observer the composite sphere behaves 
just as a homogeneous sphere of radius b with bulk modulus 
K*. If a homogeneous isotropic body with bulk modulus K* is 
subjected to homogeneous isotropic strain e°8y, the 
displacement and traction on any internal spherical surface 
with radius b are purely radial and are precisely those on the 
composite sphere boundary given in the foregoing. It follows 
that such a sphere can be replaced by the composite sphere 
without perturbing the homogeneous isotropic state of stress 
and strain in the body. Therefore such replacements can be 
performed again and again with composite spheres of dif
ferent sizes as long as the spheres all have the same A'* which is 
certaiflly the case if in all composite spheres the ratio alb and 
the constituent properties are the same. It may be rigorously 
shown that if the body is filled out with composite spheres, 
which diminish to infinitesimal size, then in the limit as the 
remaining volume goes to zero the effective bulk modulus of 
this composite material converges to the bulk modulus K*. 
This model is called the composite spheres assemblage, Fig. 2. 
Its bulk modulus is given, Hashin [16], by 

K*=KX+(K2-KX) 

= Kl + 

(3A", +Ad)v2 

3K2 + 4G1-3(K2-K1)V2 

v2 

l/(K2-K1) + 3vi/(3Kl+4Gl) 

where 1 indicates matrix and 2 indicates particles. The result 
(3.1.7) is easily generalized to the case of hollow spheres, 
reference [17], which is of practical importance for hollow 
microsphere reinforcement. 

The basis for the results established so far is special internal 
geometry which permits exact analysis. Another class of exact 
solutions is based on special relations among the constituent 
properties. One of these cases is a two-phase material of 
arbitrary phase geometry where the shear moduli of the two 
phases are equal. In this case (3.1.7) is the exact solution for 
this case, Hill [6]. 
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Another case is a weakly inhomogeneous medium which is 
defined by small deviation of local space variable moduli 
from their averages. Then, for any number of phases, 

_ K^R+KT^ (3'L8) 

where A"2 is the variance of K, Molyneux and Beran [18], 
which for two phases is given by (K2 -K\)2vxu2. Then (3.1.8) 
can be interpreted as the beginning of a series expansion in 
(K2-K,)/K. 

Finally, the isotropic version of (2.15) and (2.16) will be 
briefly discussed. In the case of statistical isotropy the two-
point tensor L,*w appearing in (2.15) is statistically isotropic. 
Even in this simplest case this tensor is expressed in terms of 
six scalars which are unknown function of r= l x - x ' I, of the 
phase geometry and the phase properties. This should be 
contrasted with (3.1.2) which require only two material 
constants. It has been shown, reference [8], that in the 
isotropic version of (2.16) D*jklm vanish and the stress-strain 
relation reduces to that of first strain gradient theory, 
requiring classical elastic moduli K*, G*, and two effective 
material length parameters, /, and l2. The latter have been 
computed, Beran and McCoy [8], for weakly non-
homogeneous media in terms of two-point correlations of the 
space variable local elastic moduli. It appears that this is the 
only calculation of higher order elastic constants of 
heterogeneous media available in the literature. 

3,1.3 Variational Bounding. When a composite 
material is statistically isotropic, the strain and stress energies 
(2.7) can be expressed in terms of (3.1.2) in the convenient 
forms 

W 
1 
;W*£2+2G*eiJeij) 

1 
(3.1.9) 

W = - ( ct/K* + SySy /2G*) 

Appropriate homogeneous boundary conditions to obtain 
energy expressions with K* only are 

«,• (S) = eXi T, (S) = an-, (3.1.10) 

To obtain energy expressions with G* only 

ui(S)=eIJXj Ti(S)=s-unj (3.1.11) 

In the following, lower and upper bounds on some effective 
property M* will be denoted M(*_) ,M(*+) implying that 

A*?., <M* <M?+ ) (3.1.12) 

For arbitrary internal phase geometry with isotropic phases 
the extremum principles of minimum potential and minimum 
complementary energy have been used with admissible linear 
displacement fields or with admissible constant stress to 
obtain the elementary bounds, Paul [19] 

/f(*_) = [ E i ; „ / ^ ] - 1 = - ^ - (a) 

(3.1.13) 

KU) = m„v„=K (b) 

Gf-) = [E«),/GJ1]-1 = - ^ - (a) 

(3.1.14) 

G('+) = EG„t;„ = G (b) 

where n labels the phases. Averages such as K and G are 
(unfortunately) sometimes called "rules of mixture." It 
follows from the usual relation of Young's modulus E to K 
and G that 

E?± 
9K?±)G; ( ± ) u ( ± ) 

(±r 3^*±) + G*±) 
(3.1.15) 

for any bounds on K* and G*. Similar bounds for effective 
Poisson's ratio v* cannot be established. 

For most applications, the bounds (3.1.13) and (3.1.14) are 
not close enough. Improved bounds for arbitrary statistically 
isotropic phase geometry have been derived, Hashin and 
Shtrikman [20], on the basis of new variational principles in 
terms of the elastic polarization tensor established in [21]. For 
two-phase media these results are: 

K(~) Ki + i/^x2-K1) + 3v,/(3Kl+4Gl)
 {a) 

(3.1.16) 

K*+) =K2 + 

Gf-) = G, 

l/(Ki-K2) + 3v2/QK2+4G2) 
(b) 

Vl 

l/iGi-GO + bv^Kt +2Gi)/5G]{.'iKl+AGl) 

G(*+) = G2 

+ 
V\ 

(1/(G, - G2) + 6v2(K2 + 2G2)/5G2(3K2 + 4G2) 

when 

K, <K7 G, <G2 

(a) 

(3.1.17) 

(*) 

(3.1.18) 
Bounds for any number of isotropic phases were also given in 
[20]. 

The original derivation of the bounds, reference [20], in
cluded some mathematical liberties. These were first removed 
in [22] by application of Fourier transform methods. Walpole 
[23] elegantly rederived the bounds by Green's function and 
potential methods using the classical extremum principles 
with the polarization concept in a manner indicated by Hill, 
reference [24]. He also generalized the bounds by removal of 
the restriction (3.1.18). Other elegant and interesting 
derivations and generalizations were given by Korringa [25], 
Willis [26, 27], Kroner [28], who introduced the notion of odd 
and even order bounds ((3.1.13) and (3.1.14) are first (odd) 
order and (3.1.16) and (3.1.17) are second (even) order), and 
Wu and McCullough [29]. 

Comparison of (3.1.16a) with (3.1.7) reveals the 
remarkable fact that they are the same. Since (3.1.7) is an 
exact result and since (3.1.16a) is a general lower bound in 
terms of phase volume fraction, it follows that (3.1.16a) is the 
best possible lower bound in terms of volume fractions. 
Similarly, (3.1.16b) is the best possible upper bound since it is 
at once interpreted as an exact result for a composite spheres 
assemblage with particles 1 of volume fraction vx and matrix 
2. It has never been shown that (3.1.17) are also best possible 
in terms of volume fractions but they well may be. The 
bounds are generally in good agreement with experimental 
data. A recent particularly careful experimental investigation 
is given in [30] also citing other experimental investigations. 

The bounds are of practical value for phase stiffness 
mutual ratios up to about 10. They obviously cannot provide 
good estimates for extreme phase stiffness ratios such as one 
rigid phase or an empty phase (porous medium). Since the 
only geometrical information entering is volume fractions, the 
bounds cannot distinguish between phases in the form of 
matrix or particles. Evidently, of two composites with same 
phases and volume fractions, one having very stiff matrix and 
the other very stiff particles - the first is much stiffer than the 
second, but both of them must obey the same bounds. Thus in 
the extreme case of one infinitely rigid phase, the upper 
bounds become infinite while in the other extreme case of an 
empty phase the lower bounds vanish. 
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To improve the bounds it is necessary to incorporate ad
ditional geometrical information. One way of doing this is in 
terms of higher order statistical information. The volume 
fractions of a statistically homogeneous material can be in
terpreted as one-point probabilities. Therefore it is plausible 
to try to incorporate additional geometrical information in 
terms of two-point, three-point . . . probabilities. This can 
be done in terms of the classical extremum principles, 
reference [4], or in terms of the polarization principles [27, 
28], which have been used to derive (3.1.16) and (3.1.17). 
Kroner [34] has given results for so-called "perfectly 
disordered" materials, defined as composites in which 
properties of a phase are not correlated with properties of 
adjacent phases and thus the two-point probabilities become 
delta functions. This however, is not a realistic concept since 
it implies that phase regions are points or that the microscale 
in the MMM principle has been lost. For discussion of various 
statistical bounds derived see [4,31, 32]. For discussion of the 
pertinent Russian literature see [33]. 

The improvement of bounds in terms of statistical in
formation poses some intrinsic problems. Experimental 
determination of the required probability functions is an 
involved and time-consuming task and it is certainly easier to 
determine the effective moduli experimentally. Furthermore, 
the ususal multipoint probability functions cannot in general 
distinguish between matrix and particle phases. Therefore, 
they are not very useful for the case of one phase much stiffer 
than the other because the bounds will be far apart for the 
same reasons given previously in relation to bounds (3.1.16) 
and (3.1.17). 

A different way to obtain improved bounds is to abandon 
general phase geometry and to construct bounds for a specific 
model. A case in point is the effective shear modulus of the 
composite spheres assemblage model discussed in the 
foregoing in the bulk modulus context. Since a sheared 
composite sphere does not behave as some equivalent 
homogeneous sphere, the replacement scheme employed for 
effective bulk modulus fails. However, solutions for a sheared 
composite sphere can be interpreted as admissible fields for 
the principles of minimum potential and minimum com
plementary energy. This gives the following upper bound for 
the case of particles stiffer than matrix, Hashin [16, 87]. 

??+,= G,[l + 
l / ( 7 - \) + A(l - c ) - c ( l -c2/3)/(Bc1/3 +Q + QJ 

where c is particle volume fraction and 

1=G2/GX 

A 2 ( 4 - 5 . , ) 

(3.1.19) 

B= 

15(1-1-,) 

10(1 - Vl) (7 - 10e2)(7 + 5 . , ) - T ( 7 - 10i>,)(7 + 5e2) 

21 4(7-Wv2) + y(l + 5v2) 

10 
C=~{l-\QVl){\-Vx) 

while the lower bound remains (3.1.17a). These bounds are 
much more restrictive than (3.1.17) (of course, at the price of 
very special geometry) and are close even for high par
ticle/matrix stiffness ratio. The bounds coincide for small c 
(to yield (3.1.56)) and also for c very close to 1. 

3.1.4 Approximations. A well-known approximation 
for effective properties of particulate composites is the so-
called Self Consistent Scheme (SCS). It is best discussed in 
terms of the relations (3.1.3) and in this sense it is a method to 
estimate the particle phase strain average. A typical particle is 
assumed to have spherical or ellipsoidal shape. In the most 
commonly used version of the method it is assumed that any 

(a ) (b) 

Fig. 3 Self-consistent scheme; (a) first version, and (b) generalized 
version 

particle is embedded in a homogeneous body which has the 
unknown properties K* and G* and is subject to boundary 
conditions of type (3.1.4) at infinity, Fig. 3(a). This defines a 
boundary value problem which can be solved for an arbitrary 
ellipsoidal particle, Eshelby [11], resulting in uniform strain 
in the particle that is a function of K* and G*. Inserting the 
average particle strain into (3.1.3) results in two simultaneous 
algebraic equations for K* and G*. It appears that the method 
originates with Bruggeman [120] in the context of 
conductivity (see Section 6.4) who named it effective medium 
theory. We shall call this the first version of the SCS. There is, 
however, no compelling reason to embed the particle directly 
in the effective medium. We may imagine the particle to be 
embedded in a matrix shell which is embedded in the effective 
medium. We shall call this the generalized SCS. Obviously, 
the mathematics is now more difficult since it is necessary to 
solve a three-phase inclusion boundary value problem to 
obtain the particle strain. For this reason the generalized 
version has been carried out only for spherical surrounded by 
concentric spherical matrix shell. 

The first version has been applied for spherical particles by 
Budiansky [35] and by Hill [36]. The final results as given by 
the latter are 

v. 
• + • 

Vi 

K*-K2 K"-K, 

+ 
v2 

3K*+4G* 

6(K*+2G*) 
(3.1.20) 

G*-G2 ' G*-G{ 5G*OK*+4G*) 

The method has been extended to randomly oriented ellip
soidal particles by Wu [37]. 

The essential problem with this simple method is that it 
violates the MMM principle. The inclusion boundary value 
problem defines variable elastic fields in the equivalent body. 
As has been explained in Part 2, the treatment of such a case 
requires micro, mini, and macroscales. In the simplest ver
sion, named the classical approximation, classical elasticity 
formulations can be used to obtain moving averages 
(or ensemble averages), thus minivariables. The solution of 
the particle boundary value problem in the SCS version 
requires satisfaction of displacement and traction continuity 
condition at particle-equivalent body interface. Thus micro-
variables (particle) are equated to minivariables (effective 
material) which is clearly meaningless, since the latter are 
averages of the former. Such a procedure would only be 
permissible for a particle whose size is of RVE order. To put it 
figuratively: the SCS assumes that a tree sees the forest - but a 
tree sees only other trees. 

It may be shown that K* and G* as defined by (3.1.20) are 
always between the bounds (3.1.16) and (3.1.17). If plotted as 
functions of particle volume fraction they are tangent to the 
lower bounds at v2 = 0 and tangent to the upper bounds at 
v2 = 1. For particles much stiffer than matrix, equation 
(3.1.20) overestimates the effective moduli while for particles 
much more compliant than matrix, the effective moduli are 
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underestimated. Indeed, for rigid particles (3.1.20) predicts 
infinite effective moduli for y2=0.50 and for voids-zero 
effective moduli for v2 =0.50. These results are unreasonable. 
Furthermore, equation (3.1.20) are invariant to phase 
property interchange while a particulate composite must 
certainly be strongly biased to such interchange since stiff 
matrix defines a much stiffer composite than stiff particles. It 
must be concluded that this version of the SCS should be 
considered with caution. But it should be noted that there are 
cases when no other method is available, e.g., short randomly 
oriented fibers which can be represented as elongated prolate 
spheroids, or platelets, which can be regarded as flat oblate 
spheroids and are thus special cases of the treatment in [37]. 

In the generalized version a composite sphere consisting of 
a particle with radius a and a concentric matrix shell with 
radius b is embedded in the effective medium, Fig. 3(b). The 
ratio t) = a/b is now an unknown parameter which (arbitrarily) 
was assigned the value 1 in the first version. In most work 
with the generalized version it was assumed that rj3 = v2 

implying that volume fractions in the composite sphere are the 
same as in the composite. The first attempt appears to be due 
to Kerner [38] who made a number of unnecessary assump
tions, obtained the correct result for K* and an incorrect 
result for G*. Interestingly enough, the result for K* is the 
same as the composite spheres assemblage result (3.1.9). (The 
mathematical reasons for this are known but unpublished.) 
He obtained for G* the lower bound (3.1.1 la) but this result is 
incorrect since he made the assumption that in the three phase 
boundary value problem, Fig. 3, in shear, the state of strain in 
the particle is a uniform shear. Another incorrect analysis to 
obtain G* was given by Van der Poel [39], who employed an 
inadmissible elasticity solution for the matrix shell. The 
correct solution for G* was given by Smith [40] and an im
proved version by Christensen and Lo [41]. It is a complicated 
implicit result but is easily evaluated numerically. It is in
teresting to note that this G* result is in between the shear 
modulus bounds for the composite spheres assemblage, 
(3.1.17a) and (3.1.19), and tangent to the bounds at both 
extremities of particle volume concentration v2 = 0,1. 

The generalized SCS appears to be a more realistic ap
proximation than the first SCS version since the matrix shell 
mitigates the problem of satisfaction of interface conditions 
and results are no longer unbiased to phase interchange. 
Intuitively, it appears that in any embedding approximation 
the best results will be achieved when a typical "building 
block" of the composite material will be embedded. An 
element consisting of particle and surrounding matrix is such 
a building block but a particle is obviously not. However, the 
choice of TJ for a spherical composite element is not obvious. 
For G*, Christensen and Lo [41] have interpreted the result as 
an approximate value for the composite spheres assemblage 
where of course T/3 = v2 • The case of arbitrary ?/ has been 
considered in [42], in the context of conductivity, and it has 
been shown that the range v2 < r/3 < 1 defines a family of 
nonintersecting curves which densely cover the region between 
the composite spheres assemblage result or best possible lower 
bound and the first SCS version. 

A method that is related in spirit to the SCS is the so-called 
differential scheme, Boucher [43], McLaughlin [44]. It ap
pears that this method also was first conceived by Bruggeman 
(see Section 6.4). It is essentially assumed that addition of a 
small amount of particles to a composite will increase the 
effective modulus by a dilute concentration-type expression 
with current effective modulus M*(v2) replacing matrix 
modulus. This approximation again assumes that particles see 
an effective material and thus also violates the MMM prin
ciple. 

In many composites of interest the particles are very 
elongated and can thus not be approximated by spheres. A 
case in point is randomly oriented fibers in a matrix, a 

material that is of significant modern technological im
portance and is called a chopped fiber composite. A 
reasonable approximate treatment for very long fibers is due 
to Christensen and Waals [45]. It essentially consists of 
orientation averaging of the effective properties of a ran
domly oriented composite cylinder. The results are actually 
upper bounds and are in reasonably good agreement with 
experimental data. If the fibers are short the only result 
available is the SCS treatment in [37], but this will probably 
considerably overestimate effective moduli for such large 
stiffness ratios as encountered for glass/polymer systems. 

3.1.5 Polycrystalline Aggregates. Metals consist of 
irregularly shaped anisotropic crystalline grains whose 
principal crystallographic axes are mostly randomly oriented 
in space. Consequently, the material is statistically isotropic. 
If the elastic moduli of all single crystals are referred to one 
fixed system of axes the polycrystalline aggregate (PA) is 
described as a composite with an infinite number of 
anisotropic phases, each phase being defined by orientation of 
crystallographic axes of its member crystalline grains. 

The problem of determination of the effective elastic 
moduli of a PA is one of long standing. Voigt [46] has 
analyzed the problem by assuming uniform strain in all 
crystals and Reuss [47], by assuming uniform stress in all 
crystals. Hill [48], in a pioneering paper, has shown on the 
basis of the classical extremum principles of elasticity, that 
the results are upper and lower bounds, respectively. To the 
writer's knowledge this paper has initiated the notion of 
bounding of effective moduli. These so-called Voigt and 
Reuss bounds are the analogues of (3.1.13) and (3.1.14). 

Hashin and Shtrikman [49] have employed their variational 
principles [21] to develop a method for bounding of PA ef
fective moduli and gave explicit results for cubic crystals. 
These are a considerable improvement of the Voigt-Reuss-
Hill bounds. The method has been employed by Peselnick and 
Meister [50], Watt [51], and Watt and Peselnick [52], to 
construct bounds for hexagonal, triclinic, tetragonal, and 
monoclinic crystals. Hashin [53] has given bounds for a PA 
consisting of two different kinds of cubic crystals. It has been 
argued [4, p. 229], that the derivation of the bounds by this 
method implies the assumption that a certain integral 
vanishes. It has been shown in [53] that this assumption does 
not enter if the grains are "equiaxed" i.e., have no preferred 
dimension. Furthermore, Walpole's [54] elegant rederivation 
of the bounds based on Green's functions and potential 
theory also reaffirms the rigorous validity of the bounds. 

Hershey [55] and Kroner [56] have used the self-consistent 
scheme with the assumption that a single crystal can be ap
proximated by an anisotropic sphere embedded in the ef
fective isotropic medium. This is the first SCS version and 
obviously the only one applicable in this case. Here the single 
crystal is the typical building block. 

3.2 Fiber Composites 

3.2.1 General. The composite material under con
sideration consists of aligned parallel fibers which are em
bedded in a matrix. Material specimens are generally cylin
drical with fibers in generator direction x}, Fig. 4. The phase 
geometry is defined by any transverse plane cut and is thus 
two-dimensional. The material is in a certain sense the two-
dimensional analogue of a particulate composite. A more 
general two-dimensional material is a fibrous composite 
where the phases have cylindrical shape but are not necessarily 
in the form of matrix and fibers. This is the two-dimensional 
analogue of the general two-phase material. The most 
commonly used fibers are glass, carbon, and graphite. Their 
cross-sectional diameters are of the order of 0.01 mm and they 
are randomly located in the transverse plane. The composite is 
consequently statistically transversely isotropic which implies 
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^* Xp 
Fig. 4 Unidirectional fiber composite 

that the effective stress strain-relations are invariant with 
respect to any rotation of the x2, and x3 axes about Xi. Such 
stress-strain relations are well known and may be written as 

ff11=n*e,l+/*e22 + /*e33 

a22=l*en+(k* + G*T)e22+(k*-G*r)e21 (3.2.1) 

a3i=l*en+{k*-G*T)e22+(k* + G*T)e33 

an=2G*Ltn a2}=2G*Te2i an=2G*Len (3.2.2) 
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(3.2.3) 

where 

k* = transverse bulk modulus, 
G? = transverse shear modulus, 
G* = longitudinal shear modulus, 
E*L = longitudinal Young's modulus, 
Ef = transverse Young's modulus, 
v*L = longitudinal Poisson's ratio, 
v*T = transverse Poisson's ratio. 

There are five independent effective elastic moduli and 
there are thus interrelations among the ones appearing in 
(3.2.1)-(3.2.3), see [1,58]. Two of these are: 

E*T 

2(1 + v*T) 
(a) 

(3.2.4) 

4/Ef = \/G*T+l/k*+4v*L
2/E*L (b) 

It has been shown in a general sense [1], that for isotropic or 
transversely isotropic constituents all effective property 
computations are defined by two-dimensional elasticity 
problems; antiplane strain for G* and generalized plane strain 
for all others. 

Hill [57], has shown that for any two-phase fibrous cylinder 
the effective properties n*, /*, k*, E*L, and v*L are in
terconnected. Two of such relations are: 

E1=E+ 
4 ( e 2 - " i ) 2 

\k k") (l/k2-l/kl)
1 \k k* 

\/k2-\/k, \k k*) 

(3.2.5) 

Here an overbar denotes averages in the sense E = 
E 1Ui+E 2u 2 . The relations are valid for isotropic and for 
transversely isotropic phases. They imply that a two-phase 
transversely isotropic fibrous material has only three in
dependent effective elastic properties. 

3.2.2 Direct Approach. To compute the effective elastic 
moduli it is best to proceed as follows: homogeneous 
boundary conditions (2.1a) are imposed on a fiber-reinforced 
cylinder with e22 = e33 = e°, all others vanish. Then from 
(3.2.1) CT22 = ff33 =2k*e°. Once k* has been computed E£ and 
v*L are known from (3.2.5) and /* and n* follow from moduli 
interrelations. To compute G*T, equation (2.1«) are applied 
with e23 # 0 , all others vanish. This defines Gf- by ff23 = 2Gf-e23 

and it is required to solve a shearing plane strain boundary 
value problem. Similarly, G*L is defined by aX2=2G*Le\2 when 
e°l2 is the only nonvanishing average strain and the boundary 
value problem that must be solved is now antiplane. 

For purposes of computation, some model of a fiber 
composite must be assumed. It appears that the only models 
for which exact analyses are available are the composite 
cylinder assemblage (CCA) for which simple closed-form 
analytical results are available and periodic arrays of identical 
fibers which must, however, be analyzed numerically. The 
CCA model is the two-dimensional analogue of the composite 
spheres assemblage model, Section 3.1.2., Fig. 2. The basic 
element is a long composite cylinder consisting of inner 
circular fiber and outer concentric matrix shell. For certain 
kinds of boundary deformations or loadings the composite 
cylinder is externally indistinguishable from some 
homogeneous transversely isotropic cylinder. Such boundary 
conditions are: radial displacement and stress in the transverse 
plane, uniform extension in axial direction, and uniform 
longitudinal shearing displacement and traction on the 
boundary. This, however, is not so for boundary conditions 
equivalent to transverse shear or to transverse uniaxial stress. 
It follows that a composite cylinder can be replaced by an 
equivalent homogeneous cylinder with regard to elastic 
properties £,* E*, v*L, n*, I*, and G* but not with regard to 
properties Gf, Ef and v*T. The CCA is constructed by filling 
out a homogeneous transversely isotropic cylinder of ar
bitrary transverse section with composite cylinders of dif
ferent radii in which the fiber volume fraction and constituent 
properties are the same. It can then be shown that, in the 
limit, k*, E I , c£, n*, /*, and G* of the assemblage are those 
of one composite cylinder. For details see [1], In view of what 
has been said in the foregoing it is sufficient to determine k* 
and G* and all others of the preceding group follow. Results 
of interest are 

k* = 
kdk2 + G\)Vi +k2(ki+Gl)v2 

(k2 + Gl)vl + (kl+G1)v2 

(3.2.6) 

= * , + • 

E I = E i y , + E 2 i ; 2 + 

\/{k2-ki) + vl/(k^ +G, ) 

4 ( " 2 - " i ) 2 ^ 2 

vt = ViVl +V2V2 + 

vl/k2 + v2/kl + I /G1 

(v2-vl)(\/kl-l/k2)viv2 

G*L = G 

v1/k2 + v2/kl +1 /G, 

G, i ; 1 +G 2 ( l+! ; 2 ) 

= G,+ 

G , ( l + t;2) + G 2 y, 

v2 

(3.2.7) 

(3.2.8) 

(3.2.9) 

\/(G2-Gx) + vl/2Gl 

where 1 is matrix and 2 is fibers. These results were first given 
by Hashin and Rosen [58], with (3.2.7) and (3.2.8) in different 
more complicated form. The method is easily extended to 
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hollow fibers [1, 58]. It is of interest to note that for the usual 
case of fibers which are considerably stiffer than the matrix 
the third term in the right side of (3.2.10) is negligible which 
leads to the well-known result 

E£=E ,u , +E2v2 (3.2.10) 

This can be derived by elementary means and is also 
rigorously true for any fiber (or fibrous) geometry if 
Poisson's ratios of phases are equal. 

The effective properties Gf-, Ef, and v*T can unfortunately 
not be derived by such a simple method and expressions are 
not available. However, close bounds have been established as 
will be discussed in the following. 

Most of numerical analyses of effective elastic properties 
have been carried out for square or hexagonal periodic arrays 
of identical circular fibers, mostly by finite element and by 
finite different methods; see e.g., references [59-61]. The 
boundary conditions on a typical repeating element of the 
array can be established by symmetry considerations and thus 
the numerical analysis can be confined to a single repeating 
element. Effective properties are then found by numerical 
averaging. It should be pointed out that the square array is 
not a suitable model for glass, carbon, and graphite fibers 
since the model is not transversely isotropic but tetragonal. 
The square array is conceivably applicable to bo
ron/aluminum composites in which fibers are arranged in 
patterns that resemble such arrays. It is, however, not ap
plicable to any type of boron tapes or prepregs. The reason is 
that these are thin unidirectionally reinforced layers whose 
thickness is of the order of the diameter of one boron fiber 
and can therefore not be considered composite materials 
(remember the MMM principle). 

The hexagonal array is a more suitable model since it is 
transversely isotropic. (All elastic materials of hexagonal 
symmetry are also transversely isotropic, see e.g., Love [62].) 
Comparison of effective elastic moduli results for hexagonal 
arrays with the CCA results (3.2.6)-(3.2.9) reveals the 
remarkable fact that they are numerically extremely close, up 
to fiber volume fractions of 70 percent [1], to all practical 
purposes. Such a remarkable agreement between two entirely 
different models leads one to the speculation that as long as 
the fibers are circular and are not in contact the actual 
locations of fibers and their diameter variations do not have 
significant effect on the effective moduli. If this is so the 
simple results (3.2.6)-(3.2.9) should apply for all such fiber 
composites. 

The results discussed so far are for isotropic fibers and 
matrix. However, carbon and graphite fibers are very 
anisotropic. This anisotropy is due to the rope-like 
microstructure of these fibers which are composed of long 
ribbons of graphite crystallites. Since the microstructure is 
axially symmetric these fibers have transversely isotropic 
properties. Their stress strain relations are thus of form 
(3.2.1)-(3.2.3) with elastic properties k, GT, GL, EL, ET, vL, 
vT. A simple scheme to transform results and analysis 
procedures for isotropic fibers and matrix into corresponding 
results and procedures for transversely isotropic fibers (and 
matr ix-if desired) has been given in [1, 63]. This is here 
summarized 

Isotropic Transversely 
Effective Phase Isotropic 
Property Modulus Replacement 

k=\+G k 
G Gj 

k\G*T,E*T,v*T E GT(3-GT/k) (3.2.11) 

v - (1 - GT/k) 

~G~l G G~L (3.2.12) 
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E* and v*L can now be obtained from (3.2.5) where v and k of 
fibers must be interpreted as vL and k of transversely isotropic 
fibers. 

3.2.3 Variational Bounding. The development of 
variational bounding methods for fiber composites has many 
similarities to such development for statistically isotropic 
composites. The classical principles of minimum potential 
and complementary energy in conjunction with linear ad
missible displacement fields and constant stress fields easily 
yield Voigt and Reuss type bounds, the analogues of (3.1.13) 
and (3.1.14), for all of the effective moduli, Hill [57], see also 
[1]. These bounds are, however, not of practical value for the 
fiber composites used in practice. It has proved possible to 
established closer bounds in terms of volume fractions only. 
These bounds happen to be also CCA effective moduli ex
pressions. In order to present them there is introduced for 
(3.2.6)-(3.2.9) the notation k*(\,2), E£(l,2), v*(l,2), G*L{\,2) 
where 1,2 denote the phases. In addition denote 

Gf(l,2) 

1 l / ( G 2 - G , ) + yi(A:i +2G,)/2G,(A:i+Gi) 
Then all lower bounds are given by k*(\,2), E2(l,2) etc. and 
all upper bounds are given by £*(2,1), E£(2,l) etc. (However, 
c*(l,2) and vt(2,l) may be either lower or upper. See [1,57] 
for criteria). All of the bounds except for Gf are at once 
recognized to be best possible in terms of volume fractions 
since they coincide with exact results for the CCA model. The 
bounds are the fibrous material counterpart of the bounds 
(3.1.16) and (3.1.17). Bounds for k*, E*L, and v*L have been 
given by Hill [57] and bounds for k*, G*T, and G*L by Hashin 
[22]. The bounds are easily transformed to apply for tran
sversely isotropic fibers by use of (3.2.11) and (3.2.12). 
Details are given in [63]. 

With respect to practical significance of the bounds, it is 
noted that E* bounds are always extremely close, thus 
demonstrating that (3.2.10) is valid for any fiber composite or 
fibrous material. The v*L bounds are useful estimates (about 
15 percent margin). The margin between the other bounds 
depends strongly on fiber/matrix stiffness ratio. For 
glass/polymer and boron/polymer composites the bounds are 
too far apart. For carbon, graphite/polymer they are close 
enough to be regarded as results (for arbitrary fiber 
geometry!) [63]. 

It will be recalled that G*T of the CCA model could not be 
obtained by a direct approach. However, it can be bounded by 
use of the classical extremum principles of elasticity. Ad
missible fields are displacements and stresses in a sheared 
composite cylinder. Details are given in [1,58]. The results will 
be written for transversely isotropic fibers 2 and for isotropic 
matrix 1. In view of (3.2.11), equation (3.2.13) becomes 

l > 2 

GT-(1,2) = G1 + T 7 ( G n _ G i ) + „ i ( A . i + G l ) / 2G 1 (A: 1 +G 1 ) 

Then 

G*r(_,=G*r(l,2) 

G ->=4 1 + 7^TrS^ (3-2-15) 
when 

G\>Gn kx<k2. 

G* -cUl (1+fi>2 "j 
n » ll p-v2[l+3fiv\/ca>l-Pi)]) (3.2.16) 

G* r (_,=GKl,2) 

when 

G^Gn kx>k2. 
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Here 

« = (0i -702) / ( l + 7 & ) P= (7 + /3iV(7- 1) 

0, =1/(3-41-,) (52=*2/(ft2+2G72) (3.2.17) 

7 = G 7 2 / G l 

The bounds (3.2.15) are applicable for fiber composites with 
fibers stiffer than matrix, thus all composites with polymeric 
matrix. The bounds (3.2.16) are applicable for the case of 
matrix stiffer than fibers, and thus for all cases of carbon and 
graphite fibers in aluminum or other metallic matrix (note 
that while EL of carbon and graphite fibers is larger than E of 
aluminum, the fiber moduli k and GT are smaller than those 
of aluminum). 

Bounds on Ef are simply obtained from (3.2.4b) as follows: 

4 1 1 4u*L
2 

= + — + — — (3.2.18) 
r(±) un±) K ^L 

3.2.4 Approximations. Different methods of ap
proximation of varying degrees of sophistication have been 
devised over the years to determine the effective elastic 
properties of fiber composites. For the case of continuous 
fibers the exact methods discussed in Sections 3.2.2 and 3.2.3 
are of sufficient accuracy and reliability to render such ap
proximations obsolete. The purpose of the present discussion 
is to assess the status of some approximations that are still 
being used, in relation to the exact results given. 

The self-consistent scheme (SCS) can be readily applied to 
fiber composites, similarly to its application to two-phase 
particulate composites. In the first version a circular fiber is 
regarded as being embedded directly in the equivalent 
transversely isotropic material. This yields algebraic 
equations for determination of all five effective moduli, Hill 
[64]. The results are in between the arbitrary phase geometry 
bounds tangent to the lower bounds (upper bounds) at fiber 
volume fraction zero (one). The results considerably 
overestimate the actual effective modup. The first SCS 
version has also been applied to the case of unidirectional 
short fibers by considering them as elongated ellipsoids [65]. 
In the generalized version a composite cylinder in which fiber 
and matrix volume fractions are those of the composite is 
embedded in the equivalent transversely isotropic material. 
This has been done by Hermans [66] for the case 
•q2 = (a/b)1 = v2 and is the analogue of Kerners approach [38], 
see Section 3.1.4. The results for k*, E*, v*L, and G* are 
precisely the exact CCA results (3.2.9)-(3.2.12) (this was not 
noted by Hermans). The G*T expression obtained is the lower 
bound (3.2.17) but this result is incorrect [1, 2], since not all 
of the fiber/matrix and continuity conditions are satisfied by 
the analysis. It is curiously the same mistake made by Kerner 
in analysis of G* of a particulate composite. The correct result 
for G*T in this context has been given by Christensen and Lo 
[2, 41]. It is algebraically lengthy but easily amenable to 
numerical evaluation. The case of unspecified t] has been 
discussed in [1]. 

A method in which fiber/matrix interface conditions are 
approximately satisfied (in a force resultant sense) has been 
devised by Aboudi [173] and has been employed for analysis 
of aligned short fiber composites, assuming square fiber cross 
sections. 

In some engineering circles, semiempirical so-called 
"Halpin-Tsai equations" [67], are sometimes used. These 
consist of the weighted average (3.2.10) for E* (this is 
universally accepted), a similar weighted average for v*L (this 
is not a good approximation), the CCA result (3.2.9) for G*, 
the lower bound (3.2.13) for Gf (taken from Hermans' paper, 
discussed above) and an empirical expression for EJ-. There 
seems to be no obvious reason for adopting such an approach. 

3.3 Cracked Materials. An interesting and important 

heterogeneous medium is an elastic body containing many 
cracks. This heterogeneous material is unlike any discussed 
before since the empty phase comprising the cracks has zero 
volume fraction. The stiffness reduction produced by the 
cracks is due to the stress singularities at the crack tips. 
Because of these the stress energy for prescribed surface 
fractions is increased by a finite amount relative to the stress 
energy of the body without cracks. Thus the cracks increase 
the compliances and therefore decrease the stiffnesses. 

It may be shown that when a cracked elastic body is sub
jected to boundary condition (2.1£>), the effective elastic 
compliances Sfjk/ are defined by 

Sfkl akl ~ ^ijkl akl + Ifij 
(3.3.1) 

I f 
7i/=2^E]5m(["/J"; + [«y]'»/)^ 

where Syw are matrix compliances, [«,-] are displacement 
jumps across the crack faces, and the summation extends over 
all cracks. The matrix compliances S^, may be isotropic or 
anisotropic. The symmetry of Sfjkl is defined by crack 
arrangement. Thus for randomly oriented cracks in an 
isotropic matrix the effective compliance tensor is isotropic 
while for cracks aligned in one direction it is orthotropic. In 
the former case (3.3.1) reduce to 

1 _ 1 2 

(3.3.2) 

JL - 1 A 
G* ~ G+~olyi2 

An alternative important definition of effective com
pliances is provided by the energy relation 

U° = U°0 + LAUm (3.3.3) 

where 

u°=\s*jkrfJJllv 
(3.3.4) 

and AC/,,, is the energy increase due to the mth crack in the 
presence of all others. This quantity can be expressed in terms 
of the crack stress intensity factor(s) (SIF), if known. In the 
case of isolated cracks this is a useful procedure since the SIF 
are simple known expressions. In the case of interacting 
cracks, however, the SIF become unknown functions of the 
mth crack length and of the entire crack geometry and At/,,,, 
in the presence of other cracks, must be found in terms of an 
integral of growing wth crack length, a somewhat hopeless 
undertaking. 

The simplest case is small density which is the analogue of 
dilute concentration discussed in the foregoing. It is assumed 
that the SIF and displacement jumps of each are given ac
curately by those of one crack in an infinite medium. The 
problem then becomes very simple. All results involve the 
crack density parameter a which is given by 

- Laf„ plane cracks 

a = \ (3.3.5) 

-Lamb2„ elliptical cracks 

where a,„ is half crack length and A the area of the plane 
specimen in the former case, while a,„, bm are the axes of the 
elliptical crack and V the volume in the latter case. All small 
crack density results are of the form 
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Sfjki — Syiti + aYijkt (3.3.6) 

where Yijk, depend on matrix properties and crack geometry. 
The first low crack density result given appears to be due to 
Bristow [68] who considered the case of randomly oriented 
line cracks. Walsh [69] computed the effective moduli for 
small density of randomly oriented elliptical cracks. Aligned 
circular cracks in an isotropic body were treated by Piau [70] 
in terms of long wave scattering (this is an unduly complicated 
method. The static method outlined in the foregoing is much 
simpler and gives the same results). Results for aligned line 
cracks in orthotropic bodies were given by Gottesman [71, 
72]. The only exact direct result for arbitrary crack density 
appears to be due to Delameter, Herrmann, and Barnett [73] 
who computed the elastic properties of a sheet containing a 
periodic rectangular array of identical line cracks by an 
analytical/numerical procedure. 

The self-consistent scheme approximation is readily 
adaptable to the present problem. The energy change due to 
any one crack is estimated by assuming that the crack is 
situated in the effective medium. The results are then given by 
(3.3.6) replacing in the TiJkl functions matrix compliances by 
effective compliances. The SCS generally underestimates the 
stiffness of cracked materials. The SCS has been applied to 
the case of randomly oriented elliptical cracks by Budiansky 
and O'Connell [74] and to the case of circular cracks aligned 
in planes by Hoenig [75]. An SCS treatment for a plane or
thotropic body with line cracks distributed parallel to the two 
axes of orthotropy has been given in [76]. 

Variational methods to obtain bounds have been recently 
initiated. Willis [77] has obtained bounds for the compliances 
of a material containing aligned penny-shaped cracks which 
are identical to the small density results for that case. Got
tesman [71] and Gottesman, Hashin, and Brull [72] have 
employed the classical variational principles to obtain bounds 
in terms of admissible fields which are elasticity solutions for 
subregions of the cracked body, each containing one crack. 

This concludes the discussion of elastic behavior. There are 
many important aspects that could not be included here. For 
excellent recent expositions see Willis [27], which also includes 
wave propagation, McCoy [30], which emphasizes statistical 
treatment, and Walpole [78]. See also Watt [177]. 

4 Thermal Expansion and Moisture Swelling 

4.1 General. The effective thermal expansion coef
ficients of a composite material are defined similarly to those 
of a homogeneous material. A large composite material body 
with no load on the boundary is subjected to uniform tem
perature rise <p. It may be trivially shown, from steady state 
heat conduction, that if <p = const, on the boundary, this is 
also true throughout the composite. The resulting average 
strains are then expressed as 

e„ = a*uV (4.1.1) 

and afj are defined as the effective thermal expansion coef
ficients. Since the body is not loaded the average stresses 
vanish but not the microstresses. For further general 
discussion of the subject see [1]. 

The fundamental result in theory of thermal expansion of 
two-phase composites is due to Levin [79] and extended by 
Rosen and Hashin [82] to generally anisotropic composites 
and phases in the forms. 

afj = &„ + («g> - aff)Pklrs (S*sij - SrsiJ) (4.1.2) 

= a«)+ (ag> - a®)Pklrs (S?sij -S®,) 

where 

Here a,-, and Sijkl are the averages of the composites' thermal 
expansion coefficients and compliances, respectively, and Im 

is the fourth-rank symmetric unit tensor. The result (4.1.2) 
uniquely determines a j in terms of phase properties and 
effective compliances Sfjkl for the most general kind of 
thermoelastic two-phase composite. It has been derived by 
application of the theorem of virtual work. The derivation is 
restricted to the case of two phases. 

For temperature dependence, equation (4.1.2) remains 
valid with all temperature dependent properties taken at final 
temperature (secant properties). 

An interesting general result is obtained for a porous or 
cracked body. If the matrix is given the index 1 then 

a* = „(!) (4.1.3) 

for any pore or crack geometry. This may be deduced from 
(4.1.2) and also simply from first principles. 

The case of moisture swelling is very similar. Moisture 
absorption is characterized by the specific moisture con
centration c which is the moisture absorbed by unit mass of 
the material. In a homogeneous anisotropic body the stress-
free moisture-swelling strains are given by 

e</ = / V (4-1.4) 

where j3y are the swelling coefficients. If the body is isotropic 
(3,y = )35,y. If there are, in addition, mechanical strains 
produced by stresses, the simplest assumption is to superpose 
them on the swelling strains thus obtaining the complete 
analogue of uncoupled thermoelasticity. The analogy extends 
to all governing equations with atj replaced by (3,-,. In com
posites there are certain differences between thermal ex
pansion and moisture swelling. When the boundary of a 
composite is subjected to a constant humidity environment 
moisture will seep in through the boundary until a steady state 
of constant c is achieved but this will take much longer (days) 
than for temperature where steady state is achieved after very 
short time. Furthermore, in most applications, one is con
cerned with a polymeric matrix that absorbs moisture, 
containing particles or fibers that do not. Thus these particles 
or fibers act as insulators and their swelling coefficients are 
zero. It follows from (4.1.2) that the effective swelling 
coefficients ft*, are given by 

05 = ft<j> - 0WPklrs (S?siJ - S $ ) (4.1.5) 

whefe 1 indicates absorbing phase. 
Finally it is noted that expressions for effective specific 

heats c*, at constant volume, and Cp, at constant pressure, for 
two-phase materials have been obtained in [82]. To practical 
purposes they are given by the volume fraction-weighted 
averages of the corresponding phase specific heats. 

4.2 Statistically Isotropic Composites. For a two-phase 
material with isotropic phases all tensors in (4.1.3) become 
isotropic. This leads to the simple result 

or* = a, + • 
a 2 - a , 

1/K-, - \/K 
\\/K*-VKx) (4.2.1) 

where K* is the effective bulk modulus and Kx and K2 are the 
phase bulk moduli. This fundamental result has been given in 
[79] and also, independently, in [80-82]. Introducing the exact 
composite spheres assemblage result (3.1.7) into (4.2.1) it 
follows that for that model 

= «j f I +ot2v2 + 
4(K2-K1)(a2~a1)G1v]v2 (4.2.2) 

-* klrs \^rstj ^rsij) ~ *\, W 

3KiK2+4G1(K1vl+K2v2) 

Arbitrary phase geometry bounds for a* which are best 
possible are easily established. The key to the procedure is the 
result (3.1.13a) from which it follows that (4.2.1) is a 
monotonic function of K*, thus replacement of K* by a 
bound in (4.2.1) produces a bound on a*. Introducing the 
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bounds (3.1.16) into (4.2.1) and denoting the result (4.2.2) as 
a*(l,2) yields the best possible bounds 

a*( l ,2)<a*<a*(2, l ) (4.2.3) 

when 

( t f 2 -A- , ) («2 -« i )<0 (fl) Kt<K2; G^KG^b) (4.2.4) 

Most materials obey (4.2.4a). If, however, this inequality 
reverses then the bounds (4.2.3) also reverse. 

All results are applicable to moisture swelling. (3* is ob
tained by setting a2 =0 and replacing a, by (3,, the swelling 
coefficient of the absorbent phase. 

4.3 Fiber Composites. A statistically transversely 
isotropic fiber composite has two expansion coefficients, a* 
in fiber direction and a f transverse to the fibers. If fibers and 
matrix are isotropic it follows from (4.1.3) that 

«*=«! + 

ar = ct[ + 

a2-
1/K-, 

- « i r 3(1-2,4) _ j _ -i 
- l/K, L E*L Kt\ 

3 3(l-2i£K 1 0 ( 2 - a i 

1/K-, - \/K L2k* i] 
These results were implicitly given in [79] and explicitly in 
[82]. A detailed derivation is given in [1]. 

To obtain the thermal expansion coefficients for the CCA 
model the results (3.2.9)-(3.2.11) are introduced into (4.3.1). 
For numerical treatment the numerical results for effective 
moduli are introduced into (4.3.1). (Unfortunately, expensive 
numerical analyses of effective thermal expansion coef
ficients, ignoring (4.3.1), still persist.) The results (4.3.1) also 
apply to aligned short fiber composites in terms of their ef
fective elastic properties. They are also easily generalized to 
transversely isotropic phases, [63], thus for carbon and 
graphite fibers. 

Moisture swelling is of particular importance for fiber 
composites. Again the results are obtained by setting a2 =0 
and al=/3l. This yields from (4.3.1) the longitudinal and 
transverse swelling coefficients PI and /3f. 

4.4 Approximations. In view of the unique relations 
(4.1.3), (4.2.1), and (4.3.1) between effective thermal ex
pansion coefficients and effective elastic properties ap
proximate treatments to obtain the former are redundant and 
should be confined to effective elastic properties. 

5 Viscoelastic Properties 

5.1 General. Study of viscoelastic behavior of com
posite materials is of interest primarily because of the con
siderable number of composites that have a polymeric matrix. 
This is the case for most fiber composites, the most common 
polymer being epoxy for unidirectional fiber composites, 
polyimide for elevated temperature applications, and 
polyesters for chopped fiber composites. Because of the time-
dependent properties of the polymer the composite will also 
exhibit time dependence. This implies that deformations grow 
(creep), stresses relax in time, and amplitudes of vibration are 
attenuated. The significance of such effects is magnified at 
elevated temperatures. For a review article on the subject see 
[83]. A comprehensive detailed treatment emphasizing fiber 
composites is contained in [1], 

Analysis of properties of viscoelastic composites is closely 
related to analysis of elastic composites. When a viscoelastic 
composite is subjected to homogeneous boundary conditions 
Ui(S) = efjXjHU) or T,(S) = (PuitjH(t), where H(t) is the 
Heaviside step function, the average strains are e^H(t) in the 
former case and the average stresses are <j°jH(t) in the latter 
case. It follows from linearity that in these cases 

°u(t)=C*Jkl(t)e% 

eij(t)=S*jkl(t)o
0

kl 
(5.1.1) 

Then C*Jkl{t) is defined as the effective relaxation moduli 
tensor and SfJkl(t) is the effective creep compliance tensor. 
These relations assume the usual hereditary form of 
viscoelastic stress-strain relations when strain and stress 
averages are general time functions. When the composite is 
statistically isotropic the effective stress-strain relations 
reduce to the usual isotropic forms in terms of effective bulk 
relaxation modulus K* (t),,shear relaxation modulus G*(t), 
bulk creep compliance I*(t), and shear creep compliance 
J*(t). 

If the problem of determination of internal fields in a 
viscoelastic composite subjected to homogeneous boundary 
conditions is formulated and the Laplace Transform (LT) is 
applied to all equations, the LT problem is entirely analogous 
to the corresponding problem of an elastic composite. Elastic 
phase moduli Cijk, are replaced by transform domain (TD) 
moduli pCijkl (p) where p is the transform variable and lower 
denotes LT. There then emerges a correspondence principle 
for quasi-static properties of viscoelastic composites, Hashin, 
[84]: "The effective TD moduli/compliances of a viscoelastic 
composite are obtained by replacement of phase elastic 
moduli by corresponding phase TD moduli in the expressions 
for effective elastic moduli/compliances of an elastic com
posite with identical phase geometry." In symbols: let ex
pressions for effective elastic properties be written 

Ct,u=FnUVCV,*CV>, ,{g}] 

SJW=/^[eC<»,*C<2> {*)] 
(5.1.2) 

where, the left e superscript denotes elastic property, EC( '") 

denote phase elastic moduli, and [g} denotes geometry. Then 

pC?Jkl(p)=Fukl\pCW(p), pC^ip), . . . ,{g}] 

pStjkl(p)=fiJkl[pC^ip), pC^(p), . . . ,{g)] 
(5.1.3) 

Equations (5.1.3) reduce the determination of quasi-static 
effective elastic properties to LT inversion, provided that 
expressions for effective elastic properties are known. It 
should be noted that in the present context the presence of an 
elastic phase in the composite implies that its properties are 
left unchanged in the replacement scheme (the TD moduli of 
an elastic material are its elastic moduli). 

It has been shown [85, 1] that the values of effective 
viscoelastic properties at times 0, oo are given by the simple 
scheme 

C?jkl(l) = FiJkl[CV(.l), C<2>(°„), . . . ,{*}] 

SS«(S.)=/««[C ( 1 )(S,), c<2>(°„) [g]] 
(5.1.4) 

which implies that initial (final) values of effective relaxation 
moduli and creep compliances are determined by associated 
effective elastic moduli and compliances in terms of initial 
(final) values of viscoelastic phase properties. It has been 
argued [83], that relations of type (5.1.9) could be used to 
approximate effective viscoelastic properties for the whole 
time range, but such "quasi-elastic" approximation must be 
regarded with caution. 

Relaxation moduli and creep compliances are necessary 
information for quasi-static analysis of viscoelastic materials. 
In the important case of steady state vibrations another set of 
viscoelastic properties called complex moduli are in
dispensable. For homogeneous viscoelastic materials the 
complex moduli are defined by the coefficients of linear 
relations between stress and strain amplitudes in steady state 
vibrations; see e.g., Christensen [86]. For composite materials 
the analogous definition is in terms of linear relations between 
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averages of stress and strain amplitudes. This raises a 
problem, for the spatial variation of stress and strain in a 
composite material in a state of vibration can never be SH 
since oscillatory stress and strain in homogeneous bodies can 
never be spatially uniform. In the simplest approach a 
classical approximation of type (2.17) is adopted. Then the 
effective complex moduli are defined for sinusoidally space 
variable average (moving or ensemble) strain and stress as 
follows: If 

eu (x,f) = £(,- (x)e"*< au (x,t) = au (x)e" (5.1.5) 

Then 

°ij(x) = Cfjld{LU))ekl(x) £,y(x) = S5w(ta))ffW(x) (5.1.6) 

where C,*w and S,*w are effective complex moduli and 
compliances, respectively, t = V ^ l , and co is the frequency of 
vibration. For statistical isotropy (5.1.6) reduce to 

~a=3K*(u1}):e s'u = 2G*(pw)eu (5.1.7) 

where the stress and strain amplitude are the usual isotropic 
and deviatoric parts. It is customary to separate complex 
moduli into real and imaginary parts. Thus 

(5.1.8) 
G(iw) = G*'(w) + iG*"(w) 

Loss tangents are defined by 

tan5% =K*"/K*' tan% = G*"/G*' (5.1.9) 

All of (5.1.5)-(5.1.9) are analogous to corresponding relations 
for homogeneous materials, thus for viscoelastic phases of a 
composite material. 

The effective complex moduli are related to effective elastic 
moduli by the correspondence principle for complex moduli 
of composites, Hashin [87]: "The effective complex moduli 
(compliances) of a viscoelastic composite are obtained by 
replacement of phase elastic moduli by corresponding phase 
complex moduli in the expressions for the effective elastic 
moduli (compliances) of a composite with identical phase 
geometry." In symbols 

Q H ( » ) = F S « [ C ( 1 ) ( W ) , C<2>(tco), . . . ,{g)] 

S8HM=/J,*/[C (1>O«), C<2>M ,(g)] 

where the functions on the right sides are the same as in 
(5.1.4) and C(I)(u<>), C(2)(tco), . . . denote the phase complex 
moduli. 

The evaluation of (5.1.10) can be greatly simplified when 
the phase loss tangents are small, which is usually the case [1, 
87]. In this event 

Q«(c J)=F^ /[C<1) '(o J),C(2»'M, . . . ,{g}] 

S^/(«)=/w /[C<1>'(«),ce>'(w) , . . • ,[g)] 

(5.1.10) 

(5.1.11) 

while imaginary parts are given in terms of derivatives of 
(5.1.11) with respect to the components of real parts of phase 
complex moduli, [87]. Examples will be given in the 
following. 

Viscoelastic properties of polymers are strongly tem
perature dependent and thus also the effective viscoelastic 
properties of composites with polymeric constituents 
(generally the matrix). It has been pointed out by Schapery 
[83], that the results given here can be modified for tem
perature dependence by means of a correspondence principle 
when the composite consists of a thermorheologically simple 
phase and an elastic phase. It is also possible to obtain 
thermoviscoelastic expansion coefficients in this case [83]. 
This method fails, however, for composites consisting of 
thermorheologically simple phases with different time shifts. 

5.2. Statistically Isotropic Composites 

5.2.1 Direct Approach. The most important case is a 

viscoelastic matrix containing elastic particles. It can mostly 
be assumed that the matrix is viscoelastic in shear only and 
thus has an elastic bulk modulus K{, shear relaxation 
modulus Gx(t), and shear creep compliance J\(t). Available 
elastic results can be converted into corresponding viscoelastic 
results. As an example for various approaches the expression 
for elastic bulk modulus of the composite spheres assemblage 
is considered to obtain K*(t) of the corresponding viscoelastic 
case. According to (5.1.3), (3.1.7) converts into [84]: 

pK*(p)=Kl+(K2-Ks) 
[3A-,+4pG,(p)]j;2 

3^2+4pG,(p)-3(Ar2-A-,)w2 

(5.2.1) 

If Gx(t) is known only numerically (5.2.1) can be converted 
into an integral equation in the time domain that must be 
solved numerically for K*(t). One possibility to obtain 
analytical solutions is to represent the shear stress-strain 
relation of the matrix by a suitable spring-dashpot model 
whose differential equation is 

P(D)su = Q(D)eu D= — (5.2.2) 

where P and Q are polynomials in D. Simple examples are the 
Maxwell model and "standard solids." It follows from LT of 
(5.2.2) that 

pG(p)=Q(p)/2P(p) (5.2.3) 

Introducing this into (5.2.1) the result can be inverted to 
obtain K*(t). Finally, the theorems (5.1.4) can be utilized to 
obtain K*(0) and K*(oo). The former is merely the elastic 
result (3.1.7) with G^O) and the latter becomes upon 
assuming very small Gt (oo) 

K*(°°) = (vl/K1+V2/K2y
l (5.2.4) 

which interestingly is the lower bound (3.1.13a). For the 
extreme cases of rigid particles (5.2.1) can be inverted in 
general fashion for the whole time domain 

**«)=[*, + j G,(0i>2]/», 

for cavities 

[' rv)=\i/3K1 + -ji (0^2_p 

(5.2.5) 

(5.2.6) 

Such simple results are of course exceptional. 
The case of shear is much more difficult since an exact 

result for G* of an elastic particulate composite for the entire 
range of volume fractions is not available. The dilute con
centration result (3.1.5b) can be transformed to viscoelasticity 
but this is only of academic interest. There is one general 
result for incompressible viscoelastic matrix containing either 
rigid particles or voids. It has been shown [84] that in these 
cases 

G*(t) =Jl(t) 

G , ( 0 J*(t) 

eG* 
= * (5.2.7) 

where the extreme right is the ratio between effective elastic 
shear modulus and matrix shear modulus for same composite 
with elastic incompressible matrix containing rigid particles or 
voids. 

Effective complex moduli are easily obtained by utilization 
of (5.1.10). Assuming again elastic particles 2 and matrix 1 
viscoelastic in shear only (5.1.10) reduce to 

K*{iu)=FK[KuGl(M),K2G2;ig)] 

G*(iw)=FG[Kl,Gl(M),K2,G2,ig}] 
where FK and FG denote expressions for effective elastic 
moduli. Define the matrix loss tangent by 

tan8 = Gr(«))/Gi(co) (5.2.9) 

It has been shown [87], that for small tan<5 (smaller than 0.1, 

(5.2.8) 
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which is usually the case) (5.2.8) can be accurately ap
proximated by 

G"(o1)=FG[Kl,G{(o>),K2,G2,lg}] 

G*"(w) = G?dFG/dG[ 

with a similar approximation for K*. The relations (5.2.8) are 
easily applied to (3.1.7) to obtain the complex bulk modulus 
for the CCA model. Details are given in [1]. For complex 
shear modulus of viscoelastic matrix with rigid particles or 
voids 

G * ( K O ) / G I M = I/-

which implies 

G*'(co) = ^Gi'(«) 

G*"(w) = ^GKw) (5.2.11) 
tanSG* = tan5G] 

where ip is given by (5.2.7). Thus the shear loss tangent of 
viscoelastic incompressible matrix is not changed by rigid 
particles or voids. 

5.2.3 Variational Bounding. Unfortunately the 
variational bounding methods that are so powerful for elastic 
composites are only of limited usefulness for viscoelastic 
composites. In view of the mathematical analogy between 
elasticity problems and Laplace transformed quasi-static 
viscoelastic problems, all bounds on effective elastic moduli 
convert into bounds on Laplace Transforms of effective 
viscoelastic properties. However, a bound on Laplace 
Transform does not convert into a bound on the transformed 
function. 

One special situation where elastic property bounds are 
easily converted is a viscoelastic incompressible matrix with 
rigid particles or voids, discussed in the foregoing (5.2.7). 
Suppose that in the elastic case, bounds are defined by 

It follows that 

^ G ^ O s G ' M ^ + j G i W (5-2.12) 

Another special situation is for times 0, oo when in view of 
(5.1.4) all elasticity bounds convert into bounds in terms of 
viscoelastic properties at times 0, oo. 

Bounding methods for effective complex moduli have been 
given by Christensen [88] and Roscoe [89, 90]. Of special 
interest are the general relations between effective moduli and 
effective complex moduli bounds derived in [90]. However, 
because of the complicated relations between real and 
imaginary parts of complex moduli and compliances such 
bounds are only rarely of practical value. In the case of small 
loss tangents, which is the usual situation in practice, it 
follows from the reasoning leading to (5.1.11) that all ef
fective elastic moduli bounds convert in bounds for real parts 
of effective complex moduli by replacing phase moduli in 
elasticity bound expressions by corresponding real parts of 
phase complex moduli. The situation for bounds on 
imaginary parts is more complicated. Such bounds can be 
established by methods used for the analogous problem of 
lossy dielectrics; see Section 6.3. 

5.2.4 Approximations. In view of the correspondence 
principles, any approximation for an effective elastic modulus 
can be interpreted as an approximation for the LT of an 
effective relaxation modulus or for an effective complex 
modulus. In the first case inversion into the time domain is 
required, which may be very difficult. It is also quite possible 
that the inversion will aggravate the inaccuracies introduced 
by the approximation. In the second case the separation into 
real and imaginary parts may introduce additional ap
proximations. 

Laws and McLaughlin [91] have used the first version of the 
SCS to estimate viscoelastic properties of a particulate 
composite based on a time domain analysis. It would seem 
preferable to use the generalized SCS version. The required 
analysis for shear modulus would of course be very difficult 
and it appears that no attempt in this direction has been made. 

An important viscoelastic composite is a chopped fiber 
composite, e.g., glass fibers in polymeric matrix. As has been 
mentioned before, the only available analytical approach for 
effective modulus is the first version of the SCS [37]. 

5.3 Fiber Composites. The case of interest is a 
unidirectional fiber composite consisting of viscoelastic 
matrix and elastic fibers. The effective stress-strain relaxation 
type relations are described by the viscoelastic hereditary 
analogue of (3.2.1) and (3.2.2) in terms of relaxation moduli 
n*(t), l*{t), k*(t), G*L(t), and G*T(t). This defines time-
dependent stress in terms of given strain history. For creep, 
thus time-dependent strain in terms of given stress history, it 
is necessary to use the viscoelastic analogue of the elastic 
strain-stress relations (3.2.3) in terms of creep compliances 
et(t),e*T(t),cl(t),c*T(t),g*L(t), and g*T{t) which are the 
viscoelastic analogues of the elastic compliances 1/E£, 1/Ef, 
-vl/El, -v*T/E*T, \/G*L and 1/Gf, respectively. All of the 
interrelations between elastic properties now apply in trans
form space and thus become quite complicated in the time 
domain. 

Results and methods discussed in Sections 5.1. and 5.2 are 
all applicable to fiber composites. In the direct approach the 
CCA results (3.2.6)-(3.2.9), if necessary modified for 
anisotropic fibers, can be interpreted as Laplace Transforms 
of effective viscoelastic properties. Assuming matrix 
viscoelastic in shear, only elastic matrix properties G,, kx, 
and i>! are replaced by pGl and by 

v, (p) =(3tf, -IpG.VlOK, +pGi) 

Some simple results obtained in this fashion are 

E! (0=E, ( f l i> i+E 2 i ; 2 e*L{t)=ei{t)v1+v2/E2 (5.3.2) 

where E,(0 and e^O are matrix Young's relaxation modulus 
and creep compliance, respectively. Since E 2 > > E ! ( 0 the 
time-dependent part of these expressions is generally 
negligible and thus for practical purposes the fiber composite 
is elastic in fiber direction. 

For fibers with shear modulus infinitely larger than matrix 
shear modulus (not carbon, graphite) 

l + l > 9 1 — V-, 
01 = 0,(1)- gW)=g1(t)- (5.3.3) 

1 - l>2 1 + V2 

where gt (t) is matrix shear creep compliance. 
Other results are not as simple. For detailed analysis see [1]. 

Some important general conclusions are that the time 
dependence of n*(t), l*(t), k*(t), and c*L(t) is weak. Such 
results may be conveniently obtained by using the final and 
initial value theorems (5.1.4). The situation with respect to 
G*T(t),g*T{t), E*T(t), "fU), and cf(t) is much more 
complicated since only bounds are available for their elastic 
counterparts. If elastic bounds are close, any of them that is 
analytically sufficiently simple can be regarded as an ap
proximate result and utilized with the correspondence 
principle to (it is hoped) obtain the corresponding viscoelastic 
results. This is the situation for carbon or graphite reinforced 
polymers where the bounds on Gf and Ej- are extremely close, 
[63]. 

6 Conduction 

6.1 General. The subject under consideration is steady 
state conduction through a composite material to be 
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charaterized by an effective conductivity tensor. General 
aspects of the problem have already been discussed in Part 2. 
While the present discussion will be in the context of thermal 
conduction it should be realized that the problems of 
thermal conduction, electrostatics, magnetostatics, and 
diffusion are mathematically analogous. Therefore 
everything said applies to all of these. A list of analogous 
quantities is given in the following. 

Jeffrey [94] on the basis of the Batchelor-Green method [15] 
and by McCoy and Beran [95]. For randomly distributed 
identical spheres the analysis of [94] gives a2 as a function of 
Hi/pi. The largest value of a2 isa2(.<x) = 4.5l. 

The composite spheres assemblage (CSA) model is easily 
analyzed for conductivity, [96]. The result is 

't* = " I + T 7 ? ^TTTTTT (6"2'3) 

1/(^2 - m ) + y,/3/J. 
Physical Subject 

thermal conduction 

electrical 
conduction 
electrostatics 

magnetostatics 

diffusion 

<P 

temperature 

potential 

potential 

potential 

concentration 

H = - V v i 

gradient 

intensity 

intensity 

intensity 

gradient 

M 

thermal 
conductivity 
electrical 
conductivity 
permittivity 

magnetic 
permeability 
diffusivity 

q 

heat flux 

current 
density 
electric 
induction 
magnetic 
induction 

The subject of diffusion is of particular current interest for 
composite materials in the context of moisture absorption. 

It is helpful to realize that there is a strong conceptual 
relation between the problems of effective elastic properties 
and of effective conductivity. Every theorem and result in one 
area has its counterpart in the other. The conceptual relation 
between elasticity and conduction is summarized in the 
following table: 

«; = 
«y = 
atJ = 
T, = 

Cijkl = 

Sijkl = 

Elasticity 

displacement 
strain 
stress 
traction 
elastic moduli 
compliances 
rigid phase 
empty phase 

<P 

q„ 

Conduction 

temperature 
gradient 
flux 
normal flux component 
conductivities 
resistivities 
superconductor 
insulator 

All of the methods, models, and results for elastic com
posites have their conductivity counterparts. The mathematics 
of the conductivity problems is considerably simpler than that 
of the elasticity problems since vectors take the place of 
second rank tensors and the scalar Laplace equation takes the 
place of the vectorial elasticity displacement equations. 

6.2 Statistically Isotropic Composites 

6.2.1 Direct Approach. When the composite is 
statistically isotropic the effective conductivity and resistivity 
tensors appearing in (2.4) assume the form 

li*U = H*8v P!J = P*SU / i V = l (6.2.1) 

Let a two-phase composite material body be subjected to the 
homogeneous boundary condition (2.2a). Then LL* can be 
expressed in the form 

H* = HI + (fi2 - A*i )(^}2)/^?)^2 ( n o s u m o n 0 (6.2.2) 

which is the counterpart of (3.1.3). An analogous definition 
can be given in terms of flux averages, see e.g., reference [42], 

Equation (6.2.2) is the basis for dilute concentration results 
for ellipsoidal or spherical particles 2 embedded in a matrix 1. 
The temperature gradient in an ellipsoidal inclusion when the 
far temperature field is linear is uniform and is a function of 
ellipsoidal axes, ji, and /x2 and orientation of the ellipsoid. 
Thus (6.2.2) is easily evaluated for randomly oriented 
ellipsoids by suitable averaging. The special case of spherical 
particles appears to be, historically, the first exact solution for 
an effective property of a composite material, Maxwell [92]. 
For discussion of various dilute concentration results see [93]. 

The problem of determination of the second term in a 
concentration expansion of type (3.1.6) has been treated by 

Another model which has been treated is a cubical array of 
equal spheres in matrix, Rayleigh [97], refined by Meredith 
and Tobias [98], McPhedran and McKenzie [99], and 
Bergman, [100]. It is interesting to note that the results for 
this model and for the CSA (6.2.3) are numerically very close, 
up to 40 percent particle volume fractions [101], where they 
begin to diverge. (Note that a cubical array is isotropic for 
conductivity but not for elasticity.) This divergence is easily 
understood since in the cubical array, particle volume frac
tions cannot exceed 52 pecent, i.e., close packing, while in the 
CSA model 100 percent volume fraction of particles is 
theoretically possible. Up to 40 percent volume fraction the 
results agree very well with experimental data [101]. It may be 
recalled that a similar situation has been encountered with 
respect to fiber composite elastic moduli for hexagonal array 
and composite cylinder assemblage results. As in that case it 
may be conjectured that the effective conductivity of a 
statistically isotropic particle composite depends primarily on 
volume fractions and only insignificantly on the statistics of 
sphere size and locations as long as the spheres are "not 
close." 

The statistical approach for conductivity in particular and 
for heterogeneous media in general originates with a 
pioneering paper by Brown [102] in which it was shown that 
ix* for a two phase medium is given by the series. 

^ . . - I ( £ ^ ) ' . , ^ ( i . , H - ^ 1^2 

+ vU ')ra + (6.2.4) 

where X is a complicated integral involving three and two-
point probability functions of the phase geometry. It is seen 
that the first two terms define the case of weak 
inhomogeneity. This has been directly derived by Beran and 
Molyneux [103], on the basis of statistical field analysis of the 
weakly inhomogeneous case. For further aspects of statistical 
analysis see Beran [4, 104]. 

6.2.2 Variational Bounding. The basis for variational 
bounding of conductivity is the definition (2.8) of con
ductivity which for statistically isotropic composites assumes 
the form 

Qh 
l 
•^'HfitV Qq=~miV 

2LI* 
(6.2.5) 

Application of the classical variational principles for steady 
state conductivity (these are the counterparts of the principles 
of minimum potential and complementary energies of 
elasticity) in conjunction with linear admissible temperature 
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or constant admissible fluxes easily yields the elementary 
bounds 

1 
- < / * * < / * (6.2.6) 
V-

These were first derived by Wiener [105] by very complex 
methods. 

Improved bounds in terms of volume fractions have been 
derived by Hashin and Shtrikman [96], on the basis of 
variational principles involving the polarization vector. These 
bounds are: 

v2 
M (-) =/^i + 777 r- 7z— (a) 

1/0*2 - / x , ) + y , /3 / i , 
(6.2.7) 

V\ 
M*(+)=ft>+ 777 r- 77— (b) 

l / ( / i , - / z 2 ) + y 2 / 3^ 2 

It is seen that (6.2.7a) is the same as the CSA result (6.2.3) and 
therefore (6.2.76) coincides with a CSA result where the 
particles are of material 1 and the matrix of material 2. 
Therefore the bounds (6.2.7) are best possible in terms of 
volume fractions and their improvement requires additional 
geometric information. Bounds have also been given in [96] 
for any number of phases. It is of interest to note that if the 
bounds (6.2.7) are expanded in series such as (6.2.4) the first 
two terms are identically equal to the first two terms of 
(6.2.4). An interesting derivation of the bounds (6.2.7) has 
been given by Bergman [ 106]. 

Various bounds in terms of additional statistical in
formation have been derived. For discussion see [32, 104], 
Prager [107] has shown that a known value for effective 
conductivity can be used to obtain better bounds than (6.2.7) 
for another two-phase material with the same phase geometry 
but different phase properties. 

The bounds (6.2.7) are not useful when one of the phases is 
highly conducting relative to the other. Unfortunately, all of 
the improved bounds in terms of higher order statistical in
formation such as three-point correlations do not provide a 
practical answer to this problem because the statistical in
formation is more difficult to measure than the effective 
property. Even such improved bounds are not close enough 
since statistical description in terms of the usual n-point 
probabilities or correlations cannot dectect which phase is 
matrix and which phase is particles. This topological 
distinction is, however, of primary importance for the case 
under consideration. 

If a random two-phase composite contains a small amount 
of highly conducting phase 2 the chances are that this will be 
in the form of particles. Then n* will be governed by the 
poorly conducting matrix 1 and will be close to the lower 
bound. If the relative volume of phase 2 is increased it will at 
some volume fraction start to form a continuous skeleton and 
thus ix* will increase dramatically, almost discontinuously, 
and will become close to the upper bound. This phenomenon 
is called percolation and its initiation is called percolation 
threshold. Discussion of this important phenomenon is not 
within the scope of the present survey. For literature and 
discussion see, e.g., reference [108], 

6.3 Anisotropic and Fiber Composites. For a trans
versely isotropic fiber composite the conductivity effective 
constitutive relations (2.4) assume the form 

ql=li*LHl q2=fj,*TH2 q3 = n$H3 (6.3.1) 

where xx is fiber direction, JX*L is effective longitudinal con
ductivity, and nr is effective transverse conductivity. 

It is easily shown, e.g., reference [42], that 

IJ.i = ixlv]+ii2v2 (6.3.2) 

for any cylindrical fibrous phase geometry. The problem of 
fi*T determination requires the solution of a plane potential 
problem with interface conditions (2.6) in the transverse plane 
and plane homogeneous boundary conditions of type (2.2). 
Examination of the governing equations reveals that this 
problem is entirely analogous to the longitudinal shearing 
problem which must be solved to determine the longitudinal 
shear modulus G*, Section 3.2.5. This may be called the 
longitudinal shearing-transverse conduction analogy. It 
follows that [1], if 

Gt=F(GuG2,{g}) (6.3.3) 

then 

rt=F(pltlt2,ig}) (6-3.4) 
where {g} denotes interface geometry. This analogy is also 
valid for numerical analysis results as has been noted for the 
case of square arrays of circular fibers by Springer and Tsai 
[109]. It then follows [1, 110] from (3.2.9) that for the 
composite cylinder assemblage model 

/*?• = /*! + 777 "L n (6-3 '5) 

l / ( /*2~ Ml) + Vi/2lXl 

Keller [111] has shown that for a periodic fiber composite 
with two axes of symmetry (e.g., a rectangular array of 
circular fibers) the two effective conductivities in the principal 
transverse directions obey a simple relation. For the case of a 
square array with equal conductivity /xj- in these two direc
tions this relation assumes the form 

M7-(Ml>M2)A'7'0*2.Ml) = /ilM2 (6.3.6) 

If /^j. is insensitive to interchange of phase 1 with phase 2 this 
yields the simple result 

nf = V/x7/̂ 2 (6.3.7) 

Some geometries for which (6.3.7) is valid are alternating 
patterns of equal squares (checkerboard) and regular 
hexagons. Keller stated that (6.3.7) is also valid for 
statistically transversely isotropic fibrous material of random 
geometry which is insensitive to phase interchange. Such a 
situation occurs for completely random mixtures of cylin
drical phases of 0.50 volume fraction each. Keller's conjecture 
was proved by Mendelson [112]. However, all of these results 
are not of much practical value for fiber composites. 

The longitudinal shearing-transverse conductivity analogy 
implies that all shear modulus bounds convert directly into 
transverse conductivity bounds. It follows that the best 
possible bounds transform into similar bounds for any 
transversely isotropic fibrous material. Thus [1, 110] 

(6.3.8) 

^ < + > ^ 2 + i 7 o ^ y w 2 ^ 
If the phases are transversely isotropic, ^ and JX2 are their 
transverse conductivities. 

Bounds on /xf in terms of statistical information (three-
point correlation functions) were given by Beran and Silnutzer 
[113] and Hori and Yonezawa [114]. Prager type bounds (in 
terms of known conductivity for certain specified values of 
phase conductivities) by Schulgasser [115, 116] who also 
discussed statistical bounds. Bounds for transversely isotropic 
composites consisting of matrix with aligned spheroidal 
particles or circular cracks have been derived by Willis [26]. 

6.4 Lossy Dielectrics. When a lossy dielectric is sub
jected to sinusoidally alternating potential the induction and 
intensity vectors are not in phase. If the phase induction is 
He1"' and the intensity is eml then these are related by 

V = ji(io>)H (6.4.1) 
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where 

Ji(ioj) = ^'(o)) —t/x"(u) (6.4.2) 

It is seen by comparison with viscoelastic vibrations, Section 
5.1, that (6.4.2) is the analogue of the complex modulus. Here 
it' is called the dielectric constant, \>." which is customarily 
taken as negative-the loss factor, while the loss tangent is 
defined by 

tanfi = /*"/>' (6.4.3) 

A composite material consisting of lossy dielectric phases 
has an effective complex dielectric constant or permittivity 

A*(iw) = /i*'(co)-i/i*"(w) (6.4.4) 

which relates average induction amplitude to average intensity 
amplitude. It follows just as in viscoelasticity that if the 
permittivity for nonlossy phases is 

?=F{jLuVat . . . {g}) (6.4.5) 

then the complex permittivity is 

£*( iu)=F[£iM,i&2M. . . . {g}] (6.4.6) 

where [g] denotes the phase geometry. This is the complete 
analogue of the complex moduli correspondence principle 
(5.1.10) and permits conversion of any effective permittivity 
result into a complex permittivity result. If the phase loss 
tangents are small, equation (6.4.6) converts into 

li"(u)=Flpi(a),ni(u), . . . (g)] (a) 

dF dF <6-4-7) 

d/x, d i t 2 

All of these results have been given by Schulgasser and Hashin 
[117]. It follows for example that the CSA result (6.2.3) 
converts at once into a corresponding result for n*' while it*" 
must be found in terms of the derivatives of (6.2.3) with 
respect to JX[ and ^ • 

The bounds (6.2.7) convert into best possible bounds for 
/x*' for any statistically isotropic two-phase geometry. The 
situation with respect to it*" bounds is much more com
plicated. Such bounds have been derived in [117] for small 
loss tangent. Bounds for /x*' and n*" without this sim
plification have also been derived by Milton [118] and 
Bergman [119], 

6.5 Approximations. Many approximations have been 
derived over the years. For comprehensive discussion see 
Boettcher [93] and Landauer [108]. The CSA result (6.2.3) has 
been derived as an approximation by a number of scientists in 
the 19th Century, Mossotti in 1850, Clausius in 1879, Lorentz 
in 1868, and Lorenz in 1880. For historical details see [108]. 
The self-consistent scheme has been applied in the versions 
discussed in Section 3.1.4. In the first version, in which a 
sphere is directly embedded in the effective medium, by 
Bruggeman [120]. This is sometimes called symmetric ef
fective medium theory in the conductivity context. The result 
is 

±l^Vl + J^ZJ^V2=o (6.5.1) 
l*l+2lt M2+2/X* 

This appears to be the initiation of the SCS to composite 
materials. Similar results have been obtained by Landauer 
[121]. 

The generalized SCS with Jj3 = y2 (see Section 3.1.4) has 
been applied by Kerner [122] with some unnecessary 
assumptions. The result is again (6.2.3). The case of arbitrary 
7] has been investigated by Hashin [42]. It was shown that rj is 
restricted to the range i>2 < r/3 < 1 and that the results 
corresponding to this range define a family of nonintersecting 
curves that densely cover the region between (6.1.7a) and 
(6.4.1). It is not clear which member of this family of SCS 
results is to be preferred. 

The differential scheme discussed in Section 3.1.4. has been 
applied to the present problem by Bruggeman [120] and this 
appears to be the origination of the method. 

7 Failure 

7.1 Introduction. The problem of the analysis of failure 
of composite materials is by an order of magnitude more 
difficult than the problem of physical property prediction 
which has been discussed until now. When a composite 
specimen is subjected to increasing load and/or temperature, 
microfailures will develop at some stage. These may be in the 
form of matrix cracks, fiber ruptures, interface separation, 
and local plastification. As loading continues they will 
multiply and ultimately merge to produce catastrophic 
failure. The failure process described cannot be followed 
analytically since: (a) knowledge of microfailure criteria is 
incomplete; (b) the stresses and strains that produce 
microfailures cannot be analytically obtained since they are 
strongly dependent on the details of microstructure, which are 
not known; and (c) even if a model of microstructure is 
assumed, stress analysis in the presence of interacting 
microfailures is a prohibitively difficult problem. While the 
problem of microfield determination also arises in property 
analysis, its implications are different in that context since 
effective properties are relations between averages and thus 
errors in details are not necessarily significant. Furthermore, 
the powerful variational bounding method, which can be 
applied with incomplete definition of microstructure, is not 
available for the failure problem. 

In spite of these difficulties, much valuable work has been 
done in failure prediction but the treatment must necessarily 
be qualitative rather than quantitative, in a "strength of 
materials" rather than "theory of elasticity" spirit. The 
present discussion will not in any sense aim at reviewing the 
immense existing body of literature but will emphasize 
available analytical ideas and guidelines. Almost everything 
said is concerned with fiber composites. Static and fatigue 
failure of unidirectional fiber composites are discussed from 
the point of view that they are the building blocks of 
laminates. Finally, static and fatigue failure of laminates are 
discussed in one Section. 

7.2 Static Failure: One Stress Component. In 
"homogeneous" materials it is customary to determine 
failure when only one stress component, e.g., uniaxial stress, 
is active, experimentally, and to construct failure criteria for 
combined stress in terms of one-dimensional ultimate stresses. 
An excellent review of the subject has been given by Paul 
[123], A similar point of view may be adopted for composite 
materials and this will be discussed in the next section. In this 
section we consider the important subject of the relation of 
one-dimensional average ultimate failure stresses to the 
microstructure and to the constituent properties. 

Very little analytical work has been done for the case of 
statistically isotropic composites, e.g., a matrix reinforced 
with particles. The analytical difficulties are quite staggering 
since it is first necessary to obtain the stress fields, which by 
itself is an intractable problem, and to utilize these to draw 
conclusions about progressive and ultimate failure. In the case 
when the matrix can be regarded as ideally plastic and the 
particles as rigid, limit analysis methods are, in principle, 
applicable. However, the construction of nontrivial ad
missible stress or velocity fields is an extremely difficult 
problem. Drucker [124] has shown that when it is possible to 
pass a principal shear plane without intersecting particles 
through the matrix, a highly theoretical state of affairs, the 
limit load is equal to that of a specimen without particles. It 
may also be easily shown that when there is no such 
geometrical restriction the matrix limit load is a lower bound 
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on the composite limit load. For a porous material Hashin 
[110] has shown that limit stress for uniaxial stress or shear 
stress is bounded from above by a0(\ -c) where a0 is matrix 
limit stress and c is the pores volume fraction. The result for 
shear is analogous. 

Experimental evidence shows that reinforcement of a 
compliant and weak matrix with stiff and strong "equiaxed" 
particles does not materially improve the strength and may 
even decrease it. Substantial increase in strength is obtained 
when the particles are elongated and randomly oriented. An 
important example is a chopped fiber or whisker-reinforced 
composite. However, any reliable analytical treatment of 
strength does not appear to be available. 

In the case of a unidirectional fiber composite the following 
failure stresses are of interest: at = tensile strength in fiber 
direction, al = compressive strength in fiber direction, af = 
tensile strength transverse to fibers, of = compressive 
strength transverse to fibers, TL = longitudinal shear strength 
(<j12 or <713), and TT = transverse shear strength (ff23)-

A great deal of work has been done in the context of at-
The oldest approach consists of the assertion 

°L=°LfVf+OmVm (7.2.1) 

where aLj is fiber tensile strength, am is matrix tensile 
strength, and vj and vm are the volume fractions. This would 
be rigorously correct if fibers and matrix reached their 
respective failure stresses simultaneously and the Poisson's 
ratios of the two constituents were equal. The last 
requirement is practically unimportant and the first one is 
numerically unimportant if aL/> >om. The failure mode for 
which (7.2.1) is applicable is a more or less plane transverse 
fracture of a tension specimen. For further discussion and 
results in this context see Kelly [125]. 

The most stringent underlying condition (7.2.1) is the tacit 
assumption that aLf is a fixed definite number. However, 
fiber strengths are often considerably scattered and are also 
functions of fiber length. A well-known analysis of tensile 
strength taking this into account has been given by Rosen 
[126]. The failure mechanism underlying this work is 
progressive random fiber ruptures. The strength of the broken 
parts is modified since the length has changed. In addition, 
the buildup of shear stress at a broken end diminishes fiber 
longitudinal stress in the shear region thus further reducing 
fiber-effective length. A fiber's carrying capacity is exhausted 
when its length has diminished to the point where it cannot 
transfer appreciable longitudinal stress (at which point it acts 
essentially as a particle). The failure mode consists of 
cumulative rupture of fibers resulting in a jagged and 
irregular fracture surface. This approach to predict tensile 
strength in fiber direction has been extended and further 
developed in numerous papers, Rosen and Zweben [127, 128], 
Hedgepeth and Van Dyke [129], and in particular, the 
statistical analyses by Phoenix [130, 131] and associates. 

The failure mode in compression in fiber direction 
essentially consists of fiber buckling within the matrix. This 
has been experimentally verified and an approximate two-
dimensional analysis to determine this buckling load has been 
given by Rosen [132] and Schuerch [133]. The result is 

aZ=G„,{\-vf) (7.2.2) 

where G„, is isotropic matrix shear modulus. 
Whatever results are available for longitudinal strength are 

made possible by the simple cylindrical geometry of fibers and 
matrix. In the case of transverse strength the situation is as 
difficult as for a particulate composite since the internal stress 
fields are unattainable. Attempts to represent the composite 
by a periodic array and to draw conclusions from the stress 
fields in this case do not appear useful since the actual stress 
fields will have vastly different local peaks. Limit analysis 
methods have been employed by Hashin [134] to repeat 

Drucker's argument that when a shear plane can be passed 
through the matrix without cutting fibers the limit stress is 
equal to the matrix limit stress. Bounds on limit shear stresses 
have been obtained by Shu and Rosen [135] and by 
McLaughlin [136-138]. All of these results are not of much 
practical value for they apply only to ideally plastic matrix 
and rigid fibers. The only fiber composite for which this has 
any relevance is boron/aluminum. Graphite and carbon fibers 
are transversely much less stiff than aluminum, and polymers 
are certainly not ideally plastic. Experience shows that the 
transverse tensile and shear strengths are of the order of 
matrix strength and quite lower than this in the case of carbon 
and graphite/aluminum. For review articles on the problems 
discussed here see Rosen [139], Chamis [140], and Phoenix 
[131]. 

7.3 Static Failure: Combined Stress. Unidirectional 
fiber composites are primarily utilized in the form of 
laminates consisting of differently oriented parallel layers or 
laminae. The simplest state of stress in any lamina is plane. At 
laminate free edges the internal state of stress is generally 
three dimensional. It is therefore necessary to establish failure 
criteria for combined states of stress. It is generally assumed 
that the failure criterion can be expressed in terms of average 
stress components. It is in principle possible to use failure 
criteria in terms of strains but this is less convenient and this 
subject will not be considered here. For discussion, see Wu 
[141]. 

It is generally assumed that failure criteria are quadratic 
polynomials in stress. It should be emphasized that this is an 
assumption of convenience and curve fitting nature, although 
the quadratic nature of stress energy has led to attempts of 
physical interpretation of the quadratic approximation. The 
coefficients in the stress polynomial must be determined in 
terms of simple failure information, preferably single-
component ultimate stresses. In one of the first contributions 
to the subject Tsai [142] assumed that Hill's [143] yield 
criterion for orthotropic plastic materials could be used as a 
failure criterion. Hoffman [144] added linear terms for the 
purpose of accounting for different tensile and compressive 
ultimate stresses. The problem with these criteria is that they 
imply that isotropic stress cannot produce failure which is 
incorrect for an anisotropic material. This was corrected by 
Tsai and Wu [145] who represented the failure criterion of any 
anisotropic material as a general quadratic in the stresses 

Fijki °v °ki + Ftj a ij = 1 (7.3.1) 

where Fjjkl and Fu are coefficients to be determined. Similar 
criteria have been proposed in the Russian literature; see e.g, 
Wu [141]. It is customary to abbreviate the coefficient indices 
according to the scheme 11 = 1, 22 = 2, 33 = 3, 13=4, 23=5, 
and 12 = 6. If the indices denote the material axes of a fiber 
composite with xy in fiber direction, terms with odd powers in 
shear stresses must be rejected since the material is insensitive 
to change of sign of shear stress. For transverse isotropy the 
surviving coefficients are 

Fn = \/atal F^Vot-UoZ 

F22=Fn = l/afaf F2=Fi = l/of—l/o:f 

F44=F66 = l/rl F5i = \/r\ <7-3-2> 

F23 =2/' OJOJ — \/T\ 

and Fx2 • This coefficient must be found from a biaxial failure 
experiment involving an and a22. Since, however, the 
material has different strengths in tension and compression 
there are four different failure pairs au , a22 and therefore Fn 

has four different values F?2
 + , F&~ , Ff2

 + , and F{~2 ~~ . This 
contradicts the basic assumption underlying (7.3.1) that the 
failure criterion can be described by a single continuous 
polynomial. Another problem with (7.3.1) is that it does not 
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predict the failure mode of the composite. For further 
discussion of these aspects see [146]. 

These problems can be avoided if the different failure 
modes of the fiber composite and the primary stresses con
tributing to them are identified and each mode is modeled 
separately by a quadratic. The principal modes are: tensile 
fiber mode described by fiber rupture; compressive fiber 
mode described by fiber buckling; tensile matrix mode 
described by plane failure surface parallel to fibers with 
°22 + ff33 > 0 a n d compressive matrix mode with a22 + <r33 <0 . 
Experimental evidence for some of these modes, obtained 
with off-axis specimens of various composites has been 
described in [147-149]. Quadratic failure criteria 
corresponding to these various modes are, Hashin [146]: 

Tensile Fiber Mode 

( f f„ /<tf ) 2 +(o? 2 +o? 3 )Ai=l ffi,>0 (7.3.3) 

Compressive Fiber Mode 

an = -aZ an <0 (7.3.4) 

Tensile Matrix Mode 
ff22 + <?33 > 0 

(<r22 + ff33)
2/<r?2 + (°23 - 022°n)/rT+ (oh + °hVT2L = 1 (7-3.5) 

Compressive Matrix Mode 

^22 + ^33 < 0 

(ff22 + a33)[(fff/2rr)
2 - l]/af+ («r22 + (T33)

2/4T*~ 

+ (a2
22 - °22°n)/Tr+ (ffn + <AiVA = 1 (7-3.6) 

Denoting the left sides of the four failure criteria by Ft{a) 
failure for a given stress state is identified by the one for 
which F,-(o)=l while for the remaining ones Fj{a)<\. This 
procedure also identifies the failure mode of the composite 
which is of significant importance for design considerations 
and finite element analysis of progressing structural failure. 

There is much need for critical comparative experimental 
examination of the various failure criteria proposed. A 
significant problem is the incorporation of scatter of test data 
into the failure criteria. A tentative approach to this problem 
has been proposed in [150]. 

7.4 Fatigue Failure of Unidirectional Fiber Composites. 
The subject of concern is failure of unidirectional fiber 
composites under cyclic average stress. Any such cyclic stress 
component is characterized by the maximum amplitude ajj, 
the minimum amplitude a-,, and the cycling frequency. 
Alternatively, it is customary to use the quantities: mean 
stress a)" = 1 /2(ff2

/ + a},),alternating stress og- = \/2(a\ —a)j), 
and stress ratio R = afj/ajj. Tensile-tensile cycling is 
characterized by 0 < i ? < l , tensile-compressive by R<1, and 
compressive-compressive by R > 1. Cycling at maximum 
amplitude which is smaller than the static ultimate stress will 
produce failure after N cycles, generally called fatigue 
lifetime. The lifetime is a function of the two amplitudes and 
of the frequency. It is however frequently a weak function of 
the latter for a range of frequencies of practical interest and 
therefore this effect will be disregarded. 

In the basic case of constant amplitude cycling the plot of 
lifetime N, generally plotted as log N, versus maximum stress 
amplitude is known as the S-N curve. Because of the large 
scatter, /Vis a random variable for any given stress amplitude. 
The probability distribution function of N may be described 
by the log-normal or by the Weibull distribution. The 
elementary S-N curve is described in terms of the mean or the 
median of log N. More sophisticated, P-S-N curves, are 
defined parametrically in terms of probability of failure. 
Since the unidirectional fiber composite is anisotropic there 
are different S-N curves in different directions. In analogy 
with static failure stresses defined in Section 7.2 one may 

define the S-N curves aL(R,N), aT(R,N), TL(R,N), and 
TT(R,N) as basic fatigue failure information. The problem of 
predicting such S-N curves on the basis of microstructural 
progressive failure is exceedingly difficult, much more so than 
the corresponding static failure problem, and therefore no 
attempt will be made to discuss whatever scant literature there 
is available on this subject. 

The two major problems in analysis of fatigue failure of 
unidirectional fiber composites are: 

1. Establishment of fatigue failure criteria for combined 
cyclic stress. 

2. Prediction of lifetime under variable amplitude cycling. 

The first problem is of particular significance for fiber 
composites since they are generally used as laminates; see 
Section 7.3. The second problem is known as the cumulative 
damage problem and has been the subject of much in
vestigation in the context of metals. It is of great practical 
importance since cyclic loadings in practice are generally of 
variable amplitude. 

Development of failure criteria for cyclic combined stress is 
quite similar to treatment for static failure criteria. In the 
general case of three-dimensional cyclic stress there are the 12 
stress amplitudes ajj and ajj. In the event that the stresses do 
not cycle in phase there are also in addition five mutual phase 
lags. A failure criterion is defined as a functional relationship 
of these 17 variables that produces failure after a specified 
number of cycles N. This defines a family of failure criteria 
with parameter TV. For discussion see [150]. Here we shall be 
concerned only with the simple but practically important case 
when all stresses cycle in phase and all R ratios of the stress 
components are the same. Then the failure criteria family 
becomes 

F(ajJ,R,N)=l (7.4.1) 

where a,-, implies maximum amplitude. For R = 1 or for 7V=0, 
equation (7.4.1) reduces to the static failure criterion. 

Fatigue failure testing of off-axis coupons reveals that in 
tensile-tensile fatigue there are two distinct failure modes, {a) 
fiber mode defined by fiber rupture, and (ft) matrix mode 
delivered by a sudden crack along fibers. This phenomenon 
has been described by Hashin and Rotem [147] for 
glass/epoxy. The same failure modes occur for 
graphite/epoxy, Awerbuch and Hahn, [151]. The situation 
for tensile-compressive and compressive-compressive cycling 
is less understood; see e.g., reference [150] for discussion. The 
metal fatigue phenomenon of slow propagation of one 
dominant crack does not occur in unidirectional fiber com
posites. In the fiber mode, failure occurs after accumulation 
of many microcracks or other flaws producing an irregular 
rupture surface. In the matrix mode, one crack propagates 
instantaneously along the fibers producing a plane fracture 
surface [147, 151]. The failure modes described are of 
phenomenological nature. A discussion of failure modes in 
terms of micromechanisms has been given by Talreja [152]. 

Adopting again the point of view that fiber and matrix 
modes should be modeled separately, exploiting the transverse 
isotropy of the unidirectional composite, and using a 
quadratic approximation, it has been shown, Hashin [150], 
that for fully reversed cycling, R = - 1, the failure criteria are: 

Fiber Mode 

(a11/ffL)2+(a2
2 + a?3)/T! = l (7.4.2) 

Matrix Mode 

[(̂ 22 + a33)/aT]2 + ( 4 , - (T22<r33)/T
2
r + (a2

2 + a2
3)/Ti = 1 (7.4.3) 

where aL = aL(-\, TV), oT = oT(- \,N), TL=TL(-1,N), and 
TT = r r ( - 1,7V) are the S-N relations for fully reversed cycling 
of stress in fiber direction, stress normal to fiber direction, 
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longitudinal and transverse shear stress, respectively, and xx is 
fiber direction. In the important case of plane cyclic stress in 
the xxx2 plane, which is appropriate for a fiber composite 
lamina, equations (7.4.2) and (7.4.3) reduce to 

Fiber Mode 

Matrix Mode 

{a21/aTf + {an/TLf = 1 

When the cycling also has mean stress, additional coefficients 
appear in the failure criteria which must be determined by test 
data for two combined cyclic stresses. However, the results 
(7.4.4) are in reasonable agreement with tensile-tensile off-
axis test data, R = 0.1, reference [147]. 

There is much need for systematic experimental work to 
investigate failure modes in tensile-compressive and com
pressive-compressive cycling. Unfortunately, most of ex
perimental work is concerned with laminates. A very 
significant problem is the large scatter of fatigue test data. 
The failure criteria discussed in the foregoing as well as all 
others used in the literature are of deterministic nature. It is 
customary to interpret them in a mean sense but there is no 
firm foundation for this assumption. A fatigue failure 
criterion should predict probability of failure or at least-
means and variances of failure loads. A tentative approach to 
this problem has been outlined in [150]. 

Next the cumulative damage problem is considered. The 
goal is to predict lifetime under specified cyclic loading 
program. Since such lifetime is a random variable the problem 
is of statistical nature. In spite of the large amount of work 

done for metals the problem is still unresolved in that case. 
Much less is known in the case of fiber composites. There 
have been two major approaches for metals. In the first, test 
data information for simple cyclic loading, such as S-N data, 
are used to predict lifetimes for complicated cyclic loadings. 
The most well-known result in this context is the simple 
Palmgren-Miner rule, which is, however, unreliable. In the 
second approach it is attempted to predict the growth of a 
single dominant crack under cyclic loading program. This 
approach is not applicable to unidirectional fiber composites 
since, as has been explained previously, slow growth of one 
dominant crack does not occur. 

Most of fiber composite work within the first approach has 
been based on the concept of residual strength degradation. 
This concept also called "wearout" appears to have been 
introduced to composites by Halpin and associates; see, e.g., 
reference [153]. The residual strength <rr(n) is defined as 
static strength after n elapsed cycles. It is obviously a 
monotonically decreasing function of n and is chosen as the 
damage parameter. Fatigue failure is assumed to occur when 
ar(n) becomes equal to the maximum stress amplitude. A 
recent paper by Yang and Jones [154] gives a statistical 
treatment for two-stage cyclic loading in terms of this ap
proach which is in reasonable agreement with some of the test 
data obtained in [155] and also contains a summary of 
previous work. The main difficulties with this interesting 
approach are: (a) it requires a statistical functional 
relationship of ar not only of n but also of previous cyclic 
loading history, and (Jb) in many cases ar degradation until 
failure is insignificant. (This has been sometimes called 
"sudden death.") 

Another possible approach is a general cumulative damage 
theory proposed by Hashin and Rotem [156] which has 
recently been generalized to a statistical theory [157]. In this 
approach damage due to a cyclic loading program is 
characterized by the residual lifetime under subsequent 
constant amplitude cycling. 

In conclusion it should be pointed out that the problems of 
failure criterion and cumulative damage which have been 

discussed separately are in reality inseparable since the state 
of stress in a lamina within a laminate is at least plane and 
therefore cumulative damage theory under combined stress is 
required. 

There is obvious need for systematic experimental work for 
unidirectional composites. Unfortunately, most of ex
perimental investigation has been done for laminates thus 
introducing major additional complexity as will become 
apparent in the next section. 

7.5 Failure of Laminates. In conclusion, the important 
problem of laminate failure under static or cyclic loading will 
be briefly discussed. A fiber composite laminate consists of 
thin, parallel, unidirectionally reinforced layers, often called 
laminae, which are firmly bonded together. The heterogeneity 
is produced by the different fiber orientations of the layers. 
Additional heterogeneity may be introduced when the 
laminate consist of different composites, in which case the 
laminate is called hybrid. It is usually assumed that the 
laminae can be represented as homogeneous anisotropic with 
the effective properties of the unidirectional material. The 
analysis of elastic and other physical properties of laminates 
in terms of lamina properties is well understood and is not 
incorporated in this survey. 

Unfortunately, however, analytical determination of static 
or fatigue failure characteristics of laminates is a very difficult 
problem which cannot be considered resolved at the present 
time. The simplest case is a symmetric laminate (the midplane 
is a geometrical and material plane of symmetry) which is 
loaded by membrane forces in its plane. In this case the 
laminae are in states of plane stress while at the edges, 
however, the state of stress is three dimensional and certain of 
its components may be singular. For such laminates consisting 
of polymer fiber composites, under static or cyclic load, there 
are two major failure processes: (1) The intralaminarprocess: 
intralaminar cracks accumulate in fiber or in matrix modes. 
In the former case the cracks are short, rupturing fibers and 
debonding fiber matrix interfaces and are randomly located. 
In the latter case cracks run parallel to fibers from edge to 
edge. Reifsnider [158] has shown experimentally the oc
currence of periodic matrix-mode crack patterns (named 
Characteristic Damage States) and has given a simple 
analytical method to predict such crack patterns. (2) The 
interlaminar process: the high edge stresses, interlaminar 
shear, and tension open up an interlaminar edge crack which 
may split the laminate. For static load this is a short-time 
phenomenon while for cyclic load the interlaminar crack may 
grow slowly with cycling, not unlike a metal fatigue crack. 
Interaction between these two processes occurs to some ex
tent. Adjacent intralaminar cracks may produce interlaminar 
debonding and interlaminar cracks may branch out to become 
intralaminar. For further discussion of such effects see 
Reifsnider et al. [159]. 

Analytical prediction is concerned with initiation, 
development, and termination of the failure process. The 
most common approach for prediction of initiation of the 
intralaminar process is to obtain the plane stress fields in the 
laminae, away from the edges, by conventional methods of 
linear elastic laminate stress analysis. Laminae nonlinearity 
may also be incorporated, Hahn [160] for nonlinearity in 
shear only, Hashin et al. [161] for nonlinear interaction of 
shear and transverse stress. The failure criteria for 
unidirectional material discussed in the foregoing are then 
examined for all laminae stresses and initial failure is 
characterized by first compliance with a failure criterion. This 
defines the failed lamina and its failure mode. Such an ap
proach has been employed by Rotem and Hashin [162] for 
fatigue failure of angle plies. Not surprisingly, the predicted 
fatigue strength is often less than the experimental result. This 
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and other aspects of fatigue of laminates have also been 
discussed in a survey article by Hahn, reference [163]. 

Analysis of failure in terms of intralaminar crack ac
cumulation by fracture mechanics methods (assuming that it 
is legitimate to consider the cracks as if in homogeneous 
anisotropic laminae) appears to be too difficult an un
dertaking at the present time. Consequently, the approach 
generally adopted is to represent lamina damage ac
cumulation in terms of in situ stiffness reduction. This 
produces redistribution of laminae stresses. New initial failure 
may be predicted until the load-carrying capacity of the 
laminate is exhausted. The most primitive approach is to 
assume that lamina fiber-mode failure implies zero stiffness in 
fiber direction and lamina matrix-mode failure implies zero 
transverse and shear stiffness. Ultimate failure is mostly 
identified with fiber-mode failure of primary load-carrying 
laminae. This approach is sometimes called the Ply Discount 
Method and may also be applied to the case of cyclic load in 
terms of laminae S-N curves and the fatigue failure criteria 
(7.4.4). 

The prediction capability of this procedure evidently 
depends on the accuracy of lamina stiffness-reduction 
evaluation. One approach is to determine in situ stiffness 
reduction analytically in terms of crack patterns. This is an 
important subject in the stage of development. Another 
approach is to determine such stiffness reduction in terms of 
measurement of laminate stiffness reduction via the known 
relations between laminae and laminate stiffnesses; see e.g., 
O'Brien and Reifsnider [164], Rotem [165]. But the crucial 
question regarding both approaches is: to what extent is 
lamina damage accumulation independent of the laminate 
stacking sequence, or at least of the fiber orientation of its 
immediate neighboring laminae? While a definitive answer to 
this question does not seem available at this time it is of in
terest to note that fatigue failure prediction of laminates 
based on the experimental stiffness reduction method, Rotem 
[165], is in good agreement with test data. 

The source of interlaminar failure is a theoretically singular 
state of edge stress, i.e., a very high state of stress of unknown 
magnitude. The prediction of interlaminar crack opening is 
thus a fracture mechanics problem the solution to which 
requires: (1) the mathematical nature of the edge singularity; 
(2) a criterion of crack criticality for static load; and (3) a 
crack growth law for cyclic load. With respect to (1), the first 
edge stress analysis was performed, numerically, by Pipes and 
Pagano [166] and many others have followed. See a recent 
review article by Soni and Pagano [167]. The possibility of 
edge stress singularity had already been surmised in [166] but 
numerical methods cannot uncover it. The analytical nature 
of edge singularities and of boundary layer edge fields has 
been established by Wang and Choi for mechanically loaded 
laminates [168] and for moisture swelling of laminates [169]. 
Problems (2) and (3) must be considered unresolved at the 
present time. Consequently edge delamination studies have 
frequently been based on application of failure criteria to edge 
stresses averaged over a small distance from the edge, 
Herakovich [170, 171]. 

This concludes the brief discussion of laminate failure. A 
recent comprehensive survey has been given by Rosen [172]. 
The present underlying point of view is that laminate failure 
must be understood in terms of failure of laminae. To descend 
to the fiber/matrix scale will result in hopeless difficulties. On 
the other hand, to explore laminate strength in terms of 
laminate coupon testing is an equally hopeless undertaking 
since from this point of view laminates are an infinite set of 
materials. 

Conclusion 

This survey has been written with the aim of presenting 

analysis of mechanical and materials as a discipline within the 
engineering sciences. Several important subjects have not 
been covered. One of these is plasticity of composite materials 
which is of particular importance in the context of metal 
matrix fiber composites. Much work on this subject has been 
done by Dvorak and associates and a brief survey has been 
given in [2]. See also recent analyses by Min [175] and Aboudi 
[176]. A related problem is plasticity of a poly crystalline 
aggregate which has received repeated attention, in particular 
by Budiansky and Wu, Hill, Hutchinson and Lin. The older 
literature has been discussed in [3]. A second important 
subject is dynamic behavior and wave propagation in com
posites. There exists a considerable literature on the subject in 
the contexts of particulate composites and layered media 
which by itself would require a substantial survey effort. 
Recent surveys have been given in [27, 174]. 

The subjects of strength and failure of composite materials 
are of special nature. Engineering design requirements have 
motivated an immense literature much of which is confined to 
unpublished reports. At the same time the problems are of 
such difficulty that an analytical definition and/or solution 
has not been achieved in many cases and therefore much of 
the available work is of semiempirical nature. The many 
important problems that require analytical solution continue 
to be a primary challenge in composite materials research. 
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